Search results for: image processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5842

Search results for: image processing

2962 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia

Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar

Abstract:

Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.

Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition

Procedia PDF Downloads 220
2961 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 333
2960 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.

Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals

Procedia PDF Downloads 93
2959 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
2958 Unsupervised Neural Architecture for Saliency Detection

Authors: Natalia Efremova, Sergey Tarasenko

Abstract:

We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.

Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment

Procedia PDF Downloads 348
2957 Neuron-Based Control Mechanisms for a Robotic Arm and Hand

Authors: Nishant Singh, Christian Huyck, Vaibhav Gandhi, Alexander Jones

Abstract:

A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.

Keywords: cell assembly, force sensitive resistor, robot, spiking neuron

Procedia PDF Downloads 349
2956 Language Activation Theory: Unlocking Bilingual Language Processing

Authors: Leorisyl D. Siarot

Abstract:

It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined.

Keywords: bilingualism, psycholinguistics, second language learning, languages

Procedia PDF Downloads 513
2955 The Internet of Things Ecosystem: Survey of the Current Landscape, Identity Relationship Management, Multifactor Authentication Mechanisms, and Underlying Protocols

Authors: Nazli W. Hardy

Abstract:

A critical component in the Internet of Things (IoT) ecosystem is the need for secure and appropriate transmission, processing, and storage of the data. Our current forms of authentication, and identity and access management do not suffice because they are not designed to service cohesive, integrated, interconnected devices, and service applications. The seemingly endless opportunities of IoT are in fact circumscribed on multiple levels by concerns such as trust, privacy, security, loss of control, and related issues. This paper considers multi-factor authentication (MFA) mechanisms and cohesive identity relationship management (IRM) standards. It also surveys messaging protocols that are appropriate for the IoT ecosystem.

Keywords: identity relation management, multifactor authentication, protocols, survey of internet of things ecosystem

Procedia PDF Downloads 355
2954 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 289
2953 Programmed Speech to Text Summarization Using Graph-Based Algorithm

Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba

Abstract:

Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculations

Keywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization

Procedia PDF Downloads 219
2952 Disordered Eating Behaviors Among Sorority Women

Authors: Andrea J. Kirk-Jenkins

Abstract:

Women in late adolescence and young adulthood are particularly vulnerable to disordered eating, and prior research indicates that those within the college and sorority communities may be especially susceptible. Research has primarily involved comparing eating disorder symptoms between sorority women and non-sorority members using formal eating disorder assessments. This phenomenological study examined sorority members’ (N = 10) perceptions of and lived experiences with various disordered eating behaviors within the sorority culture. Data from individual interviews and photographs indicated two structural themes and 11 textural themes related to factors associated with disordered eating behaviors. These findings point to the existence of both positive and negative aspects of sorority culture, normalization of disordered eating behaviors, and pressure to attain or maintain an ideal body image. Implications for university stakeholders, including college counselors, health center staff, and extracurricular program leaders, are discussed. Further research on the identified textural themes as well as a longitudinal study exploring how perceptions change from rush to alumnae status is suggested.

Keywords: eating disorders, disorder eating behaviors, sorority women, sorority culture, college women

Procedia PDF Downloads 120
2951 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
2950 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation

Authors: Richard, Iyan Subiyanto, Chairul Hudaya

Abstract:

Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.

Keywords: activated carbon, energy storage material, green coke, specific surface area

Procedia PDF Downloads 168
2949 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect

Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk

Abstract:

This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.

Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect

Procedia PDF Downloads 296
2948 Assessing the Adoption of Health Information Systems in a Resource-Constrained Country: A Case of Uganda

Authors: Lubowa Samuel

Abstract:

Health information systems, often known as HIS, are critical components of the healthcare system to improve health policies and promote global health development. In a broader sense, HIS as a system integrates data collecting, processing, reporting, and making use of various types of data to improve healthcare efficacy and efficiency through better management at all levels of healthcare delivery. The aim of this study is to assess the adoption of health information systems (HIS) in a resource-constrained country drawing from the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The results indicate that the user's perception of the technology and the poor information technology infrastructures contribute a lot to the low adoption of HIS in resource-constrained countries.

Keywords: health information systems, resource-constrained countries, health information systems

Procedia PDF Downloads 121
2947 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows

Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld

Abstract:

Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.

Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV

Procedia PDF Downloads 86
2946 Construction of Green Aggregates from Waste Processing

Authors: Fahad K. Alqahtani

Abstract:

Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.

Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate

Procedia PDF Downloads 231
2945 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa

Abstract:

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network

Procedia PDF Downloads 393
2944 Examining Cyber Crime and Its Impacts on E-Banking in Nigeria

Authors: Auwal Nata'ala

Abstract:

The Information and Communication Technology (ICT) has had impacts in almost every area human endeavor. From business, industries, banks to none profit organizations. ICT has simplified business process such as sorting, summarizing, coding, updating and generating a report in a real-time processing mode. However, the use of these ICT facilities such as computer and internet has also brought unintended consequences of criminal activities such as spamming, credit card frauds, ATM frauds, phishing, identity theft, denial of services and other related cyber crimes. This study sought to examined cyber-crime and its impact on the banking institution in Nigeria. It also examined the existing policy framework and assessed the success of the institutional countermeasures in combating cyber crime in the banking industry. This paper X-ray’s cyber crimes, policies issues and provides insight from a Nigeria perspective.

Keywords: cyber crimes, e-banking, policies, ICT

Procedia PDF Downloads 407
2943 Exploring Relationship between Attention and Consciousness

Authors: Aarushi Agarwal, Tara Singh, Anju Lata Singh, Trayambak Tiwari, Indramani Lal Singh

Abstract:

The existing interdependent relationship between attention and consciousness has been put to debate since long. To testify the nature, dual-task paradigm has been used to simultaneously manipulate awareness and attention. With central discrimination task which is attentional demanding, participants also perform simple discrimination task in the periphery in near absence of attention. Individual-based analysis of performance accuracy in single and dual condition showed and above chance level performance i.e. more than 80%. In order to widen the understanding of extent of discrimination carried in near absence of attention, natural image and its geometric equivalent shape were presented in the periphery; synthetic objects accounted to lower level of performance than natural objects in dual condition. The gaze plot and heatmap indicate that peripheral performance do not necessarily involve saccade every time, verifying the discrimination in the periphery was in near absence of attention. Thus our studies show an interdependent nature of attention and awareness.

Keywords: attention, awareness, dual task paradigm, natural and geometric images

Procedia PDF Downloads 518
2942 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 74
2941 The Gap between Elite Catholic Education and Inclusive Education

Authors: Viktorija Voidogaitė

Abstract:

Catholic education is based on the belief that every human being is created in the image and likeness of God. It is also influenced by the idea that the Kingdom of Heaven belongs to the humble and vulnerable. These principles emphasize the importance of serving the most vulnerable members of the Church community and promoting inclusivity without discrimination. This perspective emphasizes the need to protect the weakest members with compassion. However, realizing such an ideal in practice proves challenging, as the shortcomings and errors prevalent in any society often stem from the actions of Christians within that society. The evolution of these connections is observed throughout the historical development of Catholic education. In some European countries, Catholic education has become elitist, with limited room for inclusivity. This creates a conspicuous gap between the principles of the Evangelical community and elite Catholic schools and gymnasiums. Some schools appear to be most inclined to educate only those students who best align with their profile, leaving those needing assistance on the margins. As we advance into the third decade of the 21st century, there emerges a fundamental consideration: whether individuals who can assist the underprivileged and the infirm are being emphasized. Yet, it remains an open question whether these individuals will also possess the willingness and capability to construct a community or society that is inclusive and accessible to all.

Keywords: inclusion, Catholic education, inclusive education, becoming

Procedia PDF Downloads 65
2940 Streaming Communication Component for Multi-Robots

Authors: George Oliveira, Luana D. Fronza, Luiza Medeiros, Patricia D. M. Plentz

Abstract:

The research presented in this article is part of a wide project that proposes a scheduling system for multi-robots in intelligent warehouses employing multi-robot path-planning (MPP) and multi-robot task allocation (MRTA) to reconcile multiple restrictions (task delivery time, task priorities, charging capacity, and robots battery capacity). We present the software component capable of interconnecting an open streaming processing architecture and robot operating system (ROS), ensuring communication and message exchange between robots and the environment in which they are inserted. Simulation results show the good performance of our proposed technique for connecting ROS and streaming platforms.

Keywords: complex distributed systems, mobile robots, smart warehouses, streaming platforms

Procedia PDF Downloads 194
2939 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
2938 From User's Requirements to UML Class Diagram

Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa

Abstract:

The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.

Keywords: class diagram, user’s requirements, XMI, software engineering

Procedia PDF Downloads 471
2937 Evaluation of Computed Tomographic Anatomy of Respiratory System in Caspian Pond Turtle (Mauremys caspica)

Authors: Saghar Karimi, Mohammad Saeed Ahrari Khafi, Amin Abolhasani Foroughi

Abstract:

In recent decades, keeping exotic species as pet animals has become widespread. Turtles are exotic species from chelonians, which are interested by many people. Caspian pond and European pond turtles from Emydidea family are commonly kept as pets in Iran. Presence of the shell in turtles makes achievement to a comprehensive clinical examination impossible. Respiratory system is one of the most important structures to be examined completely. Presence of the air in the respiratory system makes radiography the first modality to think of; however, image quality would be affected by the shell. Computed tomography (CT) as a radiography-based and non-invasive technique provides cross-sectional scans with little superimposition. The aim of this study was to depict normal computed tomographic anatomy of the respiratory system in Caspian Pond Turtle. Five adult Caspian pond turtle were scanned using a 16-detector CT machine. Our results showed that computed tomography is able to well illustrated different parts of respiratory system in turtle and can be used for detecting abnormalities and disorders.

Keywords: anatomy, computed tomography, respiratory system, turtle

Procedia PDF Downloads 201
2936 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 101
2935 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi

Abstract:

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability

Procedia PDF Downloads 321
2934 Post-modernist Tragi-Comedy: A Study of Tom Stoppard’s “Rosencrantz and Guildenstern Are Dead”

Authors: Azza Taha Zaki

Abstract:

The death of tragedy is probably the most distinctive literary controversy of the twentieth century. There is common critical consent that tragedy in the classical sense of the word is no longer possible. Thinkers, philosophers, and critics such as Nietzsche, Durrenmatt, and George Steiner have all agreed that the decline of the genre in the modern age is due to the total lack of a unified world image and the absence of a shared vision in a fragmented and ideologically diversified world. The production of Rosencrantz and Guildenstern are Dead in 1967 marked the rise of the genre of tragi-comedy as a more appropriate reflection of the spirit of the age. At the hands of such great dramatists as Tom Stoppard (1937- ), the revived genre was not used as an extra comic element to give some comic relief to an otherwise tragic text, but it was given a postmodernist touch to serve the interpretation of the dilemma of man in the postmodernist world. This paper will study features of postmodernist tragi-comedy in Rosencrantz and Guildenstern are Dead as one of the most important plays in modern British theatre and investigate Stoppard’s vision of man and life as influenced by postmodernist thought and philosophy.

Keywords: British, drama, postmodernist, Stoppard, tragi-comedy

Procedia PDF Downloads 186
2933 Designing and Simulation of a CMOS Square Root Analog Multiplier

Authors: Milad Kaboli

Abstract:

A new CMOS low voltage current-mode four-quadrant analog multiplier based on the squarer circuit with voltage output is presented. The proposed circuit is composed of a pair of current subtractors, a pair differential-input V-I converters and a pair of voltage squarers. The circuit was simulated using HSPICE simulator in standard 0.18 μm CMOS level 49 MOSIS (BSIM3 V3.2 SPICE-based). Simulation results show the performance of the proposed circuit and experimental results are given to confirm the operation. This topology of multiplier results in a high-frequency capability with low power consumption. The multiplier operates for a power supply ±1.2V. The simulation results of analog multiplier demonstrate a THD of 0.65% in 10MHz, a −3dB bandwidth of 1.39GHz, and a maximum power consumption of 7.1mW.

Keywords: analog processing circuit, WTA, LTA, low voltage

Procedia PDF Downloads 476