Search results for: traditional scheduling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7105

Search results for: traditional scheduling algorithms

4255 Phytochemical Screening of Roots of Peltophorum pterocarpum

Authors: Vidyadhar Suram, D. Chamundeeswari, Umamaheswara Rao, Krishna Mohan Chinnala

Abstract:

Peltophorum pterocarpum known as copper pod belongs to the family Fabaceae, native to tropical south-eastern asia and a popularly ornamental tree grown around the world. In traditional medicine it is used as an astringent to cure or relieve intestinal disorders after pain at childbirth, sprains, bruises and swelling or as a lotion for eye troubles, muscular pains and sores. It is also used for gargles and tooth powders. Medcinally; it has proven to possess various pharmacological activities. The powdered root part of Peltophorum pterocarpum (250gr) were extracted exhaustively using different solvents and phytochemical investigations has shown the presence of various secondary metabolites like alkaloids, flavanoids, tannins, saponins, proteins, glycosides, steriods, and volatile.

Keywords: antibacterialactivity, fabaceae, peltophorum pterocarpum, isocoumari, alkaloids

Procedia PDF Downloads 349
4254 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 312
4253 Compressive Strength and Microstructure of Hybrid Alkaline Cements

Authors: Z. Abdollahnejad, P. Torgal, J. Barroso Aguiar

Abstract:

Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders.

Keywords: hybrid alkaline cements, compressive strength, efflorescence, SEM, ITZ

Procedia PDF Downloads 293
4252 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
4251 Co-Development of an Assisted Manual Harvesting Tool for Peach Palm That Avoids the Harvest in Heights

Authors: Mauricio Quintero Angel, Alexander Pereira, Selene Alarcón

Abstract:

One of the elements of greatest importance in agricultural production is the harvesting; an activity associated to different occupational health risks such as harvesting in high altitudes, the transport of heavy materials and the application of excessive muscle strain that leads to muscular-bone disorders. Therefore, there is an urgent necessity to improve and validate interventions to reduce exposition and risk to harvesters. This article has the objective of describing the co-development under the ergonomic analysis framework of an assisted manual harvesting tool for peach palm oriented to reduce the risk of death and accidents as it avoid the harvest in heights. The peach palm is a palm tree that is cultivated in Colombia, Perú, Brasil, Costa Rica, among others and that reaches heights of over 20 m, with stipes covered with spines. The fruits are drupes of variable size. For the harvesting of peach palm, in Colombia farmers use the “Marota” or “Climber”, a tool in a closed X shape built in wood, that has two supports adjusted at the stipe, that elevate alternately until reaching a point high enough to grab the bunch that is brought down using a rope. An activity of high risk since it is done at a high altitude without any type of protection and safety measures. The Marota is alternated with a rod, which as variable height between 5 and 12 Meters with a harness system at one end to hold the bunch that is lowered with the whole system (bamboo bunch). The rod is used from the ground or from the Marota in height. As an alternative to traditional tools, the Bajachonta was co-developed with farmers, a tool that employs a traditional bamboo hook system with modifications, to be able to hold it with a rope that passes through a pulley. Once the bunch is hitched, the hook system is detached and this stays attached to the peduncle of the palm tree, afterwards through a pulling force being exerted towards the ground by tensioning the rope, the bunch comes loose to be taken down using a rope and the pulley system to the ground, reducing the risk and efforts in the operation. The bajachonta was evaluated in tree productive zones of Colombia, with innovative farmers, were the adoption is highly probable, with some modifications to improve its efficiency and effectiveness, keeping in mind that the farmers perceive in it an advantage in the reduction of death and accidents by not having to harvest in heights.

Keywords: assisted harvesting, ergonomics, harvesting in high altitudes, participative design, peach palm

Procedia PDF Downloads 407
4250 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 141
4249 The Effect of Integrated Reporting on Corporate Financial Performance: A Bibliometric Analysis

Authors: Adhila Sandra Devy, Evangeline Syalomita Silitonga

Abstract:

The landscape of corporate governance and accountability has led to the emergence of Integrated Reporting (IR) in response to the shortcomings of traditional reporting frameworks. Developed by The International Integrated Reporting Council (IIRC), IR aims to offer stakeholders a comprehensive view of a company’s performance by integrating financial and non-financial disclosures. This study analyzes literature on Integrated Reporting and Corporate Financial Performance from 2013 to 2024, employing a descriptive analysis methodology. 31 relevant articles were gathered from various sources, indicating a positive correlation between integrated reporting and financial performance, albeit without conclusive evidence of long-term impact.

Keywords: integrated reporting, corporate financial performance, corporate performance, firm performance, bibliometric analysis

Procedia PDF Downloads 44
4248 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy

Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright

Abstract:

The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.

Keywords: information entropy, communication in manufacturing, mass customisation, scheduling

Procedia PDF Downloads 245
4247 Technology Assessment: Exploring Possibilities to Encounter Problems Faced by Intellectual Property through Blockchain

Authors: M. Ismail, E. Grifell-Tatjé, A. Paz

Abstract:

A significant discussion on the topic of blockchain as a solution to the issues of intellectual property highlights the relevance that this topic holds. Some experts label this technology as destructive since it holds immense potential to change course of traditional practices. The extent and areas to which this technology can be of use are still being researched. This paper provides an in-depth review on the intellectual property and blockchain technology. Further it explores what makes blockchain suitable for intellectual property, the practical solutions available and the support different governments are offering. This paper further studies the framework of universities in context of its outputs and how can they be streamlined using blockchain technology. The paper concludes by discussing some limitations and future research question.

Keywords: blockchain, decentralization, open innovation, intellectual property, patents, university-industry relationship

Procedia PDF Downloads 185
4246 A Potential Bio-Pesticidal Molecule Derived from Indian Traditional Plant

Authors: Bunindro Nameirakpam, Sonia Sougrapakam, Shannon B. Olsson, Rajashekar Yallappa

Abstract:

Natural sources for new pesticidal compounds hold promise in view of their eco-friendly nature, selectivity and mammalian safety. Despite a large number of plants that show insecticidal activity and diversity of natural chemistry with inherent eco-friendly nature, newer classes of insecticides have eluded discovery. Artemisia vulgaris, known as Mugwort, is a universal herb used for folk medicine and religious purposes throughout the ancient world. In India, the essential oils of Artemisia vulgaris are used for its insecticidal, anti parasiticidal and antimicrobial properties. Traditionally, the dried leaves of Artemisia vulgaris are used to repel insects as well as rats in and around the granaries in the North-East India. Artemisia vulgaris collected during November from different ecological sites were studied for the bio-pesticidal utility against the stored grain pests. The insecticidal activities were found in the crude extracts of n-hexane and methanol from the samples collected in Sikkim and Manipur respectively. Using silica gel column chromatography protocol, we have isolated one novel bioactive molecule from the aerial parts of Artemisia vulgaris L based on various physical-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and mass). The novel bioactive molecule is highly toxic and very low concentration (4.35 µg/l) is needed to control the stored product insects. In additional experiment results clearly showed the involvement of sodium pumps inhibition in the insecticidal action of purified compound in the Sitophilus oryzae. The knockdown activity of the purified compound is concomitant with the in vivo inhibition of Na+/ K+- ATPase. Further, our study showed insignificant differences in the seed germination of control and the treated grains. The lack of adverse effect of the novel bioactive molecule on the seed germination is highly desirable for seed/grain protectant and showing the potential to be developed as possible natural fumigants for the control of stored grain pests. The novel bioactive molecule is selective insecticide with a high margin of safety to mammals and showed promise as novel biopesticide candidate for grain protection. It is believed that Bio-pesticides can serve as the most important pest management tools as far as global safety is concerned.

Keywords: Indian traditional plant, Artemisia vulgaris, bio-pesticides, Na+/ K+- ATPase, seed germination

Procedia PDF Downloads 197
4245 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology

Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar

Abstract:

Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.

Keywords: data privacy, distributed system, federated learning, machine learning

Procedia PDF Downloads 134
4244 Modified Bat Algorithm for Economic Load Dispatch Problem

Authors: Daljinder Singh, J.S.Dhillon, Balraj Singh

Abstract:

According to no free lunch theorem, a single search technique cannot perform best in all conditions. Optimization method can be attractive choice to solve optimization problem that may have exclusive advantages like robust and reliable performance, global search capability, little information requirement, ease of implementation, parallelism, no requirement of differentiable and continuous objective function. In order to synergize between exploration and exploitation and to further enhance the performance of Bat algorithm, the paper proposed a modified bat algorithm that adds additional search procedure based on bat’s previous experience. The proposed algorithm is used for solving the economic load dispatch (ELD) problem. The practical constraint such valve-point loading along with power balance constraints and generator limit are undertaken. To take care of power demand constraint variable elimination method is exploited. The proposed algorithm is tested on various ELD problems. The results obtained show that the proposed algorithm is capable of performing better in majority of ELD problems considered and is at par with existing algorithms for some of problems.

Keywords: bat algorithm, economic load dispatch, penalty method, variable elimination method

Procedia PDF Downloads 459
4243 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks

Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi

Abstract:

Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.

Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata

Procedia PDF Downloads 414
4242 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve

Authors: M. Yushalify Misro, Ahmad Ramli, Jamaludin M. Ali

Abstract:

Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, the curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use the different approach to finding the best approximation for the curve so that it will resemble highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first the Bezier curve estimates the real shape of the curve which can be verified visually. Even, though, the fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed is acceptable. We verified our result with the manual calculation of the curvature from the map.

Keywords: speed estimation, path constraints, reference trajectory, Bezier curve

Procedia PDF Downloads 375
4241 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: chromosome, genetic algorithm, subtree, test

Procedia PDF Downloads 324
4240 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm

Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie

Abstract:

Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.

Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments

Procedia PDF Downloads 156
4239 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm

Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim

Abstract:

The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.

Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost

Procedia PDF Downloads 385
4238 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 42
4237 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
4236 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
4235 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
4234 Active Learning in Computer Exercises on Electronics

Authors: Zoja Raud, Valery Vodovozov

Abstract:

Modelling and simulation provide effective way to acquire engineering experience. An active approach to modelling and simulation proposed in the paper involves, beside the compulsory part directed by the traditional step-by-step instructions, the new optional part basing on the human’s habits to design thus stimulating the efforts towards success in active learning. Computer exercises as a part of engineering curriculum incorporate a set of effective activities. In addition to the knowledge acquired in theoretical training, the described educational arrangement helps to develop problem solutions, computation skills, and experimentation performance along with enhancement of practical experience and qualification.

Keywords: modelling, simulation, engineering education, electronics, active learning

Procedia PDF Downloads 391
4233 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito

Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar

Abstract:

The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.

Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes

Procedia PDF Downloads 239
4232 Design and Development of Motorized Placer for Balloon Uterine Stents in Gynecology

Authors: Metehan Mutlu, Meltem Elitas

Abstract:

This study aims to provide an automated method for placing the balloon uterine stents after hysteroscopy adhesiolysis. Currently, there are no automatized tools to place the balloon uterine stent; therefore, surgeons into the endometrial cavity manually fit it. However, it is very hard to pass the balloon stent through the cervical canal, which is roughly 10mm after the surgery. Our method aims to provide an effective and practical way of placing the stent, by automating the procedure through our designed device. Furthermore, our device does the required tasks fast compared to traditional methods, reduces the narcosis time, and decreases the bacterial contamination risks.

Keywords: balloon uterine stent, endometrial cavity, hysteroscopy, motorized-tool

Procedia PDF Downloads 276
4231 Fine-Grained Sentiment Analysis: Recent Progress

Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan

Abstract:

Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.

Keywords: sentiment analysis, fine-grained, machine learning, deep learning

Procedia PDF Downloads 262
4230 Mental Health Clinicians’ Perceptions of Nature-Based Interventions Within Community Mental Health Services: Evidence from Australia

Authors: Rachel Tambyah, Katarzyna Olcoń, Julaine Allan, Pete Destry, Thomas Astell-Burt

Abstract:

The rising social and financial burden of mental illness indicates an urgent need to explore interventions that can be used as well as or instead of traditional treatments. Although there is growing evidence of the positive mental health outcomes of spending time in nature, the implementation of nature-based interventions (NBIs) within mental health services remains minimal. Based on interviews with mental health clinicians in Australia, this study demonstrated that clinicians supported the use of NBIs and would promote them to their clients.

Keywords: nature, nature-based interventions, mental health, mental health services, mental health clinicians

Procedia PDF Downloads 149
4229 The Application of Green Technology to Residential Architecture in Hangzhou

Authors: Huiru Chen, Xuran Zhang

Abstract:

At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology.

Keywords: application, green technology, Hangzhou, residential architecture

Procedia PDF Downloads 207
4228 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR

Authors: Ivana Scidà, Francesco Alotto, Anna Osello

Abstract:

Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.

Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality

Procedia PDF Downloads 131
4227 Examining Terrorism through a Constructivist Framework: Case Study of the Islamic State

Authors: Shivani Yadav

Abstract:

The Study of terrorism lends itself to the constructivist framework as constructivism focuses on the importance of ideas and norms in shaping interests and identities. Constructivism is pertinent to understand the phenomenon of a terrorist organization like the Islamic State (IS), which opportunistically utilizes radical ideas and norms to shape its ‘politics of identity’. This ‘identity’, which is at the helm of preferences and interests of actors, in turn, shapes actions. The paper argues that an effective counter-terrorism policy must recognize the importance of ideas in order to counter the threat arising from acts of radicalism and terrorism. Traditional theories of international relations, with an emphasis on state-centric security problematic, exhibit several limitations and problems in interpreting the phenomena of terrorism. With the changing global order, these theories have failed to adapt to the changing dimensions of terrorism, especially ‘newer’ actors like the Islamic State (IS). The paper observes that IS distinguishes itself from other terrorist organizations in the way that it recruits and spreads its propaganda. Not only are its methods different, but also its tools (like social media) are new. Traditionally, too, force alone has rarely been sufficient to counter terrorism, but it seems especially impossible to completely root out an organization like IS. Time is ripe to change the discourse around terrorism and counter-terrorism strategies. The counter-terrorism measures adopted by states, which primarily focus on mitigating threats to the national security of the state, are preoccupied with statist objectives of the continuance of state institutions and maintenance of order. This limitation prevents these theories from addressing the questions of justice and the ‘human’ aspects of ideas and identity. These counter-terrorism strategies adopt a problem-solving approach that attempts to treat the symptoms without diagnosing the disease. Hence, these restrictive strategies fail to look beyond calculated retaliation against violent actions in order to address the underlying causes of discontent pertaining to ‘why’ actors turn violent in the first place. What traditional theories also overlook is that overt acts of violence may have several causal factors behind them, some of which are rooted in the structural state system. Exploring these root causes through the constructivist framework helps to decipher the process of ‘construction of terror’ and to move beyond the ‘what’ in theorization in order to describe ‘why’, ‘how’ and ‘when’ terrorism occurs. Study of terrorism would much benefit from a constructivist analysis in order to explore non-military options while countering the ideology propagated by the IS.

Keywords: constructivism, counter terrorism, Islamic State, politics of identity

Procedia PDF Downloads 189
4226 National Image in the Age of Mass Self-Communication: An Analysis of Internet Users' Perception of Portugal

Authors: L. Godinho, N. Teixeira

Abstract:

Nowadays, massification of Internet access represents one of the major challenges to the traditional powers of the State, among which the power to control its external image. The virtual world has also sparked the interest of social sciences which consider it a new field of study, an immense open text where sense is expressed. In this paper, that immense text has been accessed to so as to understand the perception Internet users from all over the world have of Portugal. Ours is a quantitative and qualitative approach, as we have resorted to buzz, thematic and category analysis. The results confirm the predominance of sea stereotype in others' vision of the Portuguese people, and evidence that national image has adapted to network communication through processes of individuation and paganization.

Keywords: national image, internet, self-communication, perception

Procedia PDF Downloads 256