Search results for: temperature analyses
7402 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage
Authors: Youcef Amir
Abstract:
The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period
Procedia PDF Downloads 2297401 A Review Investigating the Potential Of Zooxanthellae to Be Genetically Engineered to Combat Coral Bleaching
Authors: Anuschka Curran, Sandra Barnard
Abstract:
Coral reefs are of the most diverse and productive ecosystems on the planet, but due to the impact of climate change, these infrastructures are dying off primarily through coral bleaching. Coral bleaching can be described as the process by which zooxanthellae (algal endosymbionts) are expelled from the gastrodermal cavity of the respective coral host, causing increased coral whitening. The general consensus is that mass coral bleaching is due to the dysfunction of photosynthetic processes in the zooxanthellae as a result of the combined action of elevated temperature and light-stress. The question then is, do zooxanthellae have the potential to play a key role in the future of coral reef restoration through genetic engineering? The aim of this study is firstly to review the different zooxanthellae taxa and their traits with respect to environmental stress, and secondly, to review the information available on the protective mechanisms present in zooxanthellae cells when experiencing temperature fluctuations, specifically concentrating on heat shock proteins and the antioxidant stress response of zooxanthellae. The eight clades (A-H) previously recognized were redefined into seven genera. Different zooxanthellae taxa exhibit different traits, such as their photosynthetic stress responses to light and temperature. Zooxanthellae have the ability to determine the amount and type of heat shock proteins (hsps) present during a heat response. The zooxanthellae can regulate both the host’s respective hsps as well as their own. Hsps, generally found in genotype C3 zooxanthellae, such as Hsp70 and Hsp90, contribute to the thermal stress response of the respective coral host. Antioxidant activity found both within exposed coral tissue, and the zooxanthellae cells can prevent coral hosts from expelling their endosymbionts. The up-regulation of gene expression, which may mitigate thermal stress induction of any of the physiological aspects discussed, can ensure stable coral-zooxanthellae symbiosis in the future. It presents a viable alternative strategy to preserve reefs amidst climate change. In conclusion, despite their unusual molecular design, genetic engineering poses as a useful tool in understanding and manipulating variables and systems within zooxanthellae and therefore presents a solution that can ensure stable coral-zooxanthellae symbiosis in the future.Keywords: antioxidant enzymes, genetic engineering, heat-shock proteins, Symbiodinium
Procedia PDF Downloads 1897400 Electrical Properties of Polarization-Induced Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride Sapphire Template by Molecular Beam Epitaxy
Authors: Guanlin Wu, Jiajia Yao, Fang Liu, Junshuai Xue, Jincheng Zhang, Yue Hao
Abstract:
Owing to the excellent thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN)/Gallium nitride (GaN) is a highly promising material to achieve high breakdown voltage and output power devices among III-nitrides. In this study, we explore the growth and characterization of polarization-induced AlN/GaN heterostructures using plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and demonstrate the effectiveness of the PA-MBE approach, a thick AlN buffer of 180 nm was first grown on the AlN-on sapphire template. This buffer acts as a back-barrier to enhance the breakdown characteristic and isolate leakage paths that exist in the interface between the AlN epilayer and the AlN template. A root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 was measured by atomic force microscopy (AFM), and the full-width at half-maximum of (002) and (102) planes on the X-ray rocking curve was 101 and 206 arcsec, respectively, using by high-resolution X-ray diffraction (HR-XRD). The electron mobility of 443 cm2/Vs with a carrier concentration of 2.50×1013 cm-2 at room temperature was achieved in the AlN/GaN heterostructures by using a polarization-induced GaN channel. The low depletion capacitance of 15 pF is resolved by the capacitance-voltage. These results indicate that the polarization-induced AlN/GaN heterostructures have great potential for next-generation high-temperature, high-frequency, and high-power electronics.Keywords: AlN, GaN, MBE, heterostructures
Procedia PDF Downloads 857399 Evaluation of the Phenolic Composition of Curcumin from Different Turmeric (Curcuma longa L.) Extracts: A Comprehensive Study Based on Chemical Turmeric Extract, Turmeric Tea and Fresh Turmeric Juice
Authors: Beyza Sukran Isik, Gokce Altin, Ipek Yalcinkaya, Evren Demircan, Asli Can Karaca, Beraat Ozcelik
Abstract:
Turmeric (Curcuma longa L.), is used as a food additive (spice), preservative and coloring agent in Asian countries, including China and South East Asia. It is also considered as a medicinal plant. Traditional Indian medicine evaluates turmeric powder for the treatment of biliary disorders, rheumatism, and sinusitis. It has rich polyphenol content. Turmeric has yellow color mainly because of the presence of three major pigments; curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione), demethoxy-curcumin and bis demothoxy-curcumin. These curcuminoids are recognized to have high antioxidant activities. Curcumin is the major constituent of Curcuma species. Method: To prepare turmeric tea, 0.5 gram of turmeric powder was brewed with 250 ml of water at 90°C, 10 minutes. 500 grams of fresh turmeric washed and shelled prior to squeezing. Both turmeric tea and turmeric juice pass through 45 lm filters and stored at -20°C in the dark for further analyses. Curcumin was extracted from 20 grams of turmeric powder by 70 ml ethanol solution (95:5 ethanol/water v/v) in a water bath at 80°C, 6 hours. Extraction was contributed for 2 hours at the end of 6 hours by addition of 30 ml ethanol. Ethanol was removed by rotary evaporator. Remained extract stored at -20°C in the dark. Total phenolic content and phenolic profile were determined by spectrophotometric analysis and ultra-fast liquid chromatography (UFLC), respectively. Results: The total phenolic content of ethanolic extract of turmeric, turmeric juice, and turmeric tea were determined 50.72, 31.76 and 29.68 ppt, respectively. The ethanolic extract of turmeric, turmeric juice, and turmeric tea have been injected into UFLC and analyzed for curcumin contents. The curcumin content in ethanolic extract of turmeric, turmeric juice, and turmeric tea were 4067.4, 156.7 ppm and 1.1 ppm, respectively. Significance: Turmeric is known as a good source of curcumin. According to the results, it can be stated that its tea is not sufficient way for curcumin consumption. Turmeric juice can be preferred to turmeric tea for higher curcumin content. Ethanolic extract of turmeric showed the highest content of turmeric in both spectrophotometric and chromatographic analyses. Nonpolar solvents and carriers which have polar binding sites have to be considered for curcumin consumption due to its nonpolar nature.Keywords: phenolic compounds, spectrophotometry, turmeric, UFLC
Procedia PDF Downloads 2007398 In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials
Authors: Yuko Matayoshi, Takashi Sakai, Yin-Gjum Jin, Jun-ichi Koyama
Abstract:
To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and micro structures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron back scatter diffraction (EBSD) analyses.Keywords: pure aluminum, pure copper, single crystal, bending, SEM-EBSD analysis, texture, microstructure
Procedia PDF Downloads 3697397 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 2297396 Corruption, Tax Systems and Inclusive Development
Authors: Lawrence Kwaku Amoako, Parrendah Adwoa Kpeli
Abstract:
This paper analyses the implications of the corruption and tax system on inclusive development. We employ a sample of 45 countries between 2007 and 2020. We test for two related hypotheses; first, corruption hinders the smooth mobilisation of revenue through the tax system. Second, a rise in corruption amidst a defective tax system impairs inclusive development. We expect that a rise in the level of corruption in the economy will distort the tax system, thus affecting efficient revenue mobilisation and, subsequently, inclusive development. By extension, these findings have important policy implications for governments in containing corruption and building an effective tax system as it will help promote inclusive development.Keywords: corruption, development, tax systems, tax complexity
Procedia PDF Downloads 1137395 Thermo-Mechanical Treatments of Cu-Ti Alloys
Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan
Abstract:
This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. Metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most effective hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as a long grain boundaries were responsible for the averaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well know that plate like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature a classic widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).Keywords: metallographic, hardness, precipitation, aging
Procedia PDF Downloads 4067394 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials
Authors: H. Yanar, G. Purcek, H. H. Ayar
Abstract:
The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.Keywords: brake pad composite, friction and wear, rubber, friction materials
Procedia PDF Downloads 1377393 X-Ray Photoelectron Spectroscopy Analyses of Candidate Materials for Advanced Nuclear Reactors
Authors: Marie Kudrnová, Jana Rejková
Abstract:
The samples of supplied INCONEL 601, 617, 625, and HASTELLOY C-22 alloys and experimental nickel alloy MoNiCr were examined by XPS (X-ray photoelectron spectroscopy) before and after exposure. The experiment was performed in a mixture of LiCl-KCl salt (58.2-41.8 wt. %). The exposure conditions were 440°C, pressure 0.2 MPa, 500 hours in an inert argon atmosphere. The XPS analysis shows that a thin oxide layer composed of metal oxides such as NiO, Cr₂O₃, and Nb₂O₅ was formed. After sputtering the exposed surface with Ar ions, metals were also detected in the elemental state, indicating a very thin protective oxide layer with a thickness in units of up to tens of nanometers.Keywords: XPS, MSR, nickel alloy, metal oxides
Procedia PDF Downloads 797392 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor
Procedia PDF Downloads 1247391 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia
Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo
Abstract:
Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.Keywords: climate variability, crop income, household, rainfall, temperature
Procedia PDF Downloads 3767390 Investigating Homicide Offender Typologies Based on Their Clinical Histories and Crime Scene Behaviour Patterns
Authors: Valeria Abreu Minero, Edward Barker, Hannah Dickson, Francois Husson, Sandra Flynn, Jennifer Shaw
Abstract:
Purpose – The purpose of this paper is to identify offender typologies based on aspects of the offenders’ psychopathology and their associations with crime scene behaviours using data derived from the National Confidential Enquiry into Suicide and Safety in Mental Health concerning homicides in England and Wales committed by offenders in contact with mental health services in the year preceding the offence (n=759). Design/methodology/approach – The authors used multiple correspondence analysis to investigate the interrelationships between the variables and hierarchical agglomerative clustering to identify offender typologies. Variables describing: the offender’s mental health history; the offenders’ mental state at the time of offence; characteristics useful for police investigations; and patterns of crime scene behaviours were included. Findings – Results showed differences in the offender’s histories in relation to their crime scene behaviours. Further, analyses revealed three homicide typologies: externalising, psychosis and depression. Analyses revealed three homicide typologies: externalising, psychotic and depressive. Practical implications – These typologies may assist the police during homicide investigations by: furthering their understanding of the crime or likely suspect; offering insights into crime patterns; provide advice as to what an offender’s offence behaviour might signify about his/her mental health background; findings suggest information concerning offender psychopathology may be useful for offender profiling purposes in cases of homicide offenders with schizophrenia, depression and comorbid diagnosis of personality disorder and alcohol/drug dependence. Originality/value – Empirical studies with an emphasis on offender profiling have almost exclusively focussed on the inference of offender demographic characteristics. This study provides a first step in the exploration of offender psychopathology and its integration to the multivariate analysis of offence information for the purposes of investigative profiling of homicide by identifying the dominant patterns of mental illness within homicidal behaviour.Keywords: offender profiling, mental illness, psychopathology, multivariate analysis, homicide, crime scene analysis, crime scene behviours, investigative advice
Procedia PDF Downloads 1297389 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides
Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen
Abstract:
CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide
Procedia PDF Downloads 2967388 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys
Procedia PDF Downloads 1767387 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys
Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune
Abstract:
In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis
Procedia PDF Downloads 3317386 A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling
Authors: Sinan Yapici, Hayrettin Eroglu
Abstract:
The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K.Keywords: radiation, diosorption, thallium, empirical modelling
Procedia PDF Downloads 2657385 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel
Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar
Abstract:
High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation
Procedia PDF Downloads 3497384 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions
Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei
Abstract:
This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics
Procedia PDF Downloads 847383 The Automated Soil Erosion Monitoring System (ASEMS)
Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos
Abstract:
The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.Keywords: soil management, climate change, new technologies, conservation practices
Procedia PDF Downloads 3457382 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method
Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki
Abstract:
Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic
Procedia PDF Downloads 3027381 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still
Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama
Abstract:
A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.Keywords: distillation, solar energy, heat transfer, mass transfer, average height
Procedia PDF Downloads 1447380 Cuckoo Search (CS) Optimization Algorithm for Solving Constrained Optimization
Authors: Sait Ali Uymaz, Gülay Tezel
Abstract:
This paper presents the comparison results on the performance of the Cuckoo Search (CS) algorithm for constrained optimization problems. For constraint handling, CS algorithm uses penalty method. CS algorithm is tested on thirteen well-known test problems and the results obtained are compared to Particle Swarm Optimization (PSO) algorithm. Mean, best, median and worst values were employed for the analyses of performance.Keywords: cuckoo search, particle swarm optimization, constrained optimization problems, penalty method
Procedia PDF Downloads 5587379 Cost-Effectiveness of a Certified Service or Hearing Dog Compared to a Regular Companion Dog
Authors: Lundqvist M., Alwin J., Levin L-A.
Abstract:
Background: Assistance dogs are dogs trained to assist persons with functional impairment or chronic diseases. The assistance dog concept includes different types: guide dogs, hearing dogs, and service dogs. The service dog can further be divided into subgroups of physical services dogs, diabetes alert dogs, and seizure alert dogs. To examine the long-term effects of health care interventions, both in terms of resource use and health outcomes, cost-effectiveness analyses can be conducted. This analysis can provide important input to decision-makers when setting priorities. Little is known when it comes to the cost-effectiveness of assistance dogs. The study aimed to assess the cost-effectiveness of certified service or hearing dogs in comparison to regular companion dogs. Methods: The main data source for the analysis was the “service and hearing dog project”. It was a longitudinal interventional study with a pre-post design that incorporated fifty-five owners and their dogs. Data on all relevant costs affected by the use of a service dog such as; municipal services, health care costs, costs of sick leave, and costs of informal care were collected. Health-related quality of life was measured with the standardized instrument EQ-5D-3L. A decision-analytic Markov model was constructed to conduct the cost-effectiveness analysis. Outcomes were estimated over a 10-year time horizon. The incremental cost-effectiveness ratio expressed as cost per gained quality-adjusted life year was the primary outcome. The analysis employed a societal perspective. Results: The result of the cost-effectiveness analysis showed that compared to a regular companion dog, a certified dog is cost-effective with both lower total costs [-32,000 USD] and more quality-adjusted life-years [0.17]. Also, we will present subgroup results analyzing the cost-effectiveness of physicals service dogs and diabetes alert dogs. Conclusions: The study shows that a certified dog is cost-effective in comparison with a regular companion dog for individuals with functional impairments or chronic diseases. Analyses of uncertainty imply that further studies are needed.Keywords: service dogs, hearing dogs, health economics, Markov model, quality-adjusted, life years
Procedia PDF Downloads 1527378 Extremophilic Amylases of Mycelial Fungi Strains Isolated in South Caucasus for Starch Processing
Authors: T. Urushadze, R. Khvedelidze, L. Kutateladze, M. Jobava, T. Burduli, T. Alexidze
Abstract:
There is an increasing interest in reliable, wasteless, ecologically friendly technologies. About 40% of enzymes produced all over the world are used for production of syrups with high concentration of glucose-fructose. One of such technologies complies obtaining fermentable sugar glucose from raw materials containing starch by means of amylases. In modern alcohol-producing factories this process is running in two steps, involving two enzymes of different origin: bacterial α-amylase and fungal glucoamylase, as generally fungal amylases are less thermostable as compared to bacterial amylases. Selection of stable and operable at 700С and higher temperatures enzyme preparation with both α- and glucoamylase activities will allow conducting this process in one step. S. Durmishidze Institute of Biochemistry and Biotechnology owns unique collection of mycelial fungi, isolated from different ecological niches of Caucasus. As a result of screening our collection 39 strains poducing amylases were revealed. Most of them belong to the genus Aspergillus. Optimum temperatures of action of selected amylases from three producers were estableshed to be within the range 67-80°C. A. niger B-6 showed higher α-amylase activity at 67°C, and glucoamylase activity at 62°C, A. niger 6-12 showed higher α-amylase activity at 72°C, and glucoamylase activity at 65°C, Aspergillus niger p8-3 showed higher activities at 82°C and 70°C, for α-amylase and glucoamylase activities, respectively. Exhaustive hydrolysis process of starch solutions of different concentrations (3, 5, 15, and 30 %) with cultural liquid and technical preparation of Aspergillus niger p8-3 enzyme was studied. In case of low concentrations exhaustive hydrolysis of starch lasts 40–60 minutes, in case of high concentrations hydrolysis takes longer time. 98, 6% yield of glucose can be reached at incubation during 12 hours with enzyme cultural liquid and 8 hours incubation with technical preparation of the enzyme at gradual increase of temperature from 50°C to 82°C during the first 20 minutes and further decrease of temperature to 70°C. Temperature setting for high yield of glucose and high hydrolysis (pasteurizing), optimal for activity of these strains is the prerequisite to be able to carry out hydrolysis of starch to glucose in one step, and consequently, using one strain, what will be economically justified.Keywords: amylase, glucose hydrolisis, stability, starch
Procedia PDF Downloads 3507377 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy
Authors: A. Hakem, Y. Bouafia
Abstract:
Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon
Procedia PDF Downloads 2647376 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)
Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri
Abstract:
The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.Keywords: sig, geothermal, potenteil, temperature
Procedia PDF Downloads 4657375 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste
Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha
Abstract:
Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil
Procedia PDF Downloads 1367374 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)
Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen
Abstract:
Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha
Procedia PDF Downloads 1337373 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system
Procedia PDF Downloads 154