Search results for: spatial-ecological modeling
1091 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Authors: Fazlul Karim, Esa Al-Islam
Abstract:
Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method
Procedia PDF Downloads 4411090 How Social Capital Mediates the Relationships between Interpersonal Interaction and Health: Location-Based Augmented Reality Games
Authors: Chechen Liao, Pui-Lai To, Yi-Hui Wang
Abstract:
Recently location-based augmented reality games (LBS+AR) have become increasingly popular as a major form of entertainment. Location-based augmented reality games have provided a lot of opportunities for face-to-face interaction among players. Prior studies also indicate that the social side of location-based augmented reality games are one of the major reasons for players to engage in the games. However, the impact of the usage of location-based augmented reality games has not been well explored. The study examines how interpersonal interaction affects social capital and health through playing location-based augmented reality games. The study also investigates how social capital mediates the relationships between interpersonal interaction and health. The study uses survey method to collect data. Six-hundred forty-seven questionnaires are collected. Structural equation modeling is used to investigate the relationships among variables. The causal relationships between variables in the research model are tested. The results of the study indicated that four interpersonal attraction attributes, including ability, proximity, similarity, and familiarity, are identified by ways of factor analysis. Interpersonal attraction is important for location-based augmented reality game-players to develop bonding and bridging social capital. Bonding and bridging social capital have a positive impact on the mental and social health of game-players. The results of the study provide academic and practical implications for future growth of location-based augmented reality games.Keywords: health, interpersonal interaction, location-based augmented reality games, social capital
Procedia PDF Downloads 2581089 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon
Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David
Abstract:
The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining
Procedia PDF Downloads 1551088 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression
Procedia PDF Downloads 3951087 Process Monitoring Based on Parameterless Self-Organizing Map
Authors: Young Jae Choung, Seoung Bum Kim
Abstract:
Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property
Procedia PDF Downloads 2751086 Finite Difference Modelling of Temperature Distribution around Fire Generated Heat Source in an Enclosure
Authors: A. A. Dare, E. U. Iniegbedion
Abstract:
Industrial furnaces generally involve enclosures of fire typically initiated by the combustion of gases. The fire leads to temperature distribution inside the enclosure. A proper understanding of the temperature and velocity distribution within the enclosure is often required for optimal design and use of the furnace. This study was therefore directed at numerical modeling of temperature distribution inside an enclosure as typical in a furnace. A mathematical model was developed from the conservation of mass, momentum and energy. The stream function-vorticity formulation of the governing equations was solved by an alternating direction implicit (ADI) finite difference technique. The finite difference formulation obtained were then developed into a computer code. This was used to determine the temperature, velocities, stream function and vorticity. The effect of the wall heat conduction was also considered, by assuming a one-dimensional heat flow through the wall. The computer code (MATLAB program) developed was used for the determination of the aforementioned variables. The results obtained showed that the transient temperature distribution assumed a uniform profile which becomes more chaotic with increasing time. The vertical velocity showed increasing turbulent behavior with time, while the horizontal velocity assumed decreasing laminar behavior with time. All of these behaviours were equally reported in the literature. The developed model has provided understanding of heat transfer process in an industrial furnace.Keywords: heat source, modelling, enclosure, furnace
Procedia PDF Downloads 2551085 On the Development of Medical Additive Manufacturing in Egypt
Authors: Khalid Abdelghany
Abstract:
Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants
Procedia PDF Downloads 3151084 Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion
Authors: Mohamed S. El-Asfoury, Ahmed Abdel-Moneim, Mohamed N. A. Nasr
Abstract:
The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage.Keywords: non-equal channel angular extrusion, multi-pass, sever plastic deformation, back pressure, Finite Element Modelling (FEM)
Procedia PDF Downloads 4221083 Exploring the Impact of Dual Brand Image on Continuous Smartphone Usage Intention
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
The mobile phone has no longer confined to communication, from the aspect of smartphones, consumers are only willing to pay for the product which the added value has corresponded with their appetites, such as multiple application, upgrade of the camera, and the appearance of the phone and so on. Moreover, as the maturity stage of smartphone industry today, the strategy which manufactures used to gain competitive advantages through hardware as well as software differentiation, is no longer valid. Thus, this research aims to initiate from brand image, to examine exactly whether consumers’ buying intention focus on smartphone brand or operating system, at the same time, perceived value and customer satisfaction will be added between brand image and continuous usage intention to investigate the impact of these two facets toward continuous usage intention. This study verifies the correlation, fitness, and relationship between the variables that lies within the conceptual framework. The result of using structural equation modeling shows that brand image has a positive impact on continuous usage intention. Firms can affect consumer perceived value and customer satisfaction through the creation of the brand image. It also shows that the brand image of smartphone and brand image of the operating system have a positive impact on customer perceived value and customer satisfaction. Furthermore, perceived value also has a positive impact on satisfaction, and so is the relation within satisfaction and perceived value to the continuous usage intention. Last but not least, the brand image of the smartphone has a more remarkable impact on customers than the brand image of the operating system. In addition, this study extends the results to management practice and suggests manufactures to provide fine product design and hardware.Keywords: smartphone, brand image, perceived value, continuous usage intention
Procedia PDF Downloads 1971082 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis
Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan
Abstract:
Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow
Procedia PDF Downloads 1421081 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion
Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay
Abstract:
Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.Keywords: DFT, picolinate, IR, Raman, nonlinear optic
Procedia PDF Downloads 4991080 Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades
Authors: Guillaume Linassier, Morgan Balland, Hugo Pervier, Marie Pervier, David Hammond
Abstract:
Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts.Keywords: turbomachine, anti-icing, cascade rig, runback water
Procedia PDF Downloads 1821079 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 1421078 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1331077 An Investigation of the Association between Pathological Personality Dimensions and Emotion Dysregulation among Virtual Network Users: The Mediating Role of Cyberchondria Behaviors
Authors: Mehdi Destani, Asghar Heydari
Abstract:
Objective: The present study aimed to investigate the association between pathological personality dimensions and emotion dysregulation through the mediating role of Cyberchondria behaviors among users of virtual networks. Materials and methods: A descriptive–correlational research method was used in this study, and the statistical population consisted of all people active on social network sites in 2020. The sample size was 300 people who were selected through Convenience Sampling. Data collection was carried out in a survey method using online questionnaires, including the "Difficulties in Emotion Regulation Scale" (DERS), Personality Inventory for DSM-5 Brief Form (PID-5-BF), and Cyberchondria Severity Scale Brief Form (CSS-12). Data analysis was conducted using Pearson's Correlation Coefficient and Structural Equation Modeling (SEM). Findings: Findings suggested that pathological personality dimensions and Cyberchondria behaviors have a positive and significant association with emotion dysregulation (p<0.001). The presented model had a good fit with the data. The variable “pathological personality dimensions” with an overall effect (p<0.001, β=0.658), a direct effect (p<0.001, β=0.528), and an indirect mediating effect through Cyberchondria Behaviors (p<.001), β=0.130), accounted for emotion dysregulation among virtual network users. Conclusion: The research findings showed a necessity to pay attention to the pathological personality dimensions as a determining variable and Cyberchondria behaviors as a mediator in the vulnerability of users of social network sites to emotion dysregulation.Keywords: cyberchondria, emotion dysregulation, pathological personality dimensions, social networks
Procedia PDF Downloads 1041076 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 1741075 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 3191074 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models
Authors: Yungtai Lo
Abstract:
Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve
Procedia PDF Downloads 3491073 An Approach for Association Rules Ranking
Authors: Rihab Idoudi, Karim Saheb Ettabaa, Basel Solaiman, Kamel Hamrouni
Abstract:
Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain.Keywords: association rule, conceptual clusters, interestingness measures, ontology knowledge mining, ranking
Procedia PDF Downloads 3221072 Development and Control of Deep Seated Gravitational Slope Deformation: The Case of Colzate-Vertova Landslide, Bergamo, Northern Italy
Authors: Paola Comella, Vincenzo Francani, Paola Gattinoni
Abstract:
This paper presents the Colzate-Vertova landslide, a Deep Seated Gravitational Slope Deformation (DSGSD) located in the Seriana Valley, Northern Italy. The paper aims at describing the development as well as evaluating the factors that influence the evolution of the landslide. After defining the conceptual model of the landslide, numerical simulations were developed using a finite element numerical model, first with a two-dimensional domain, and later with a three-dimensional one. The results of the 2-D model showed a displacement field typical of a sackung, as a consequence of the erosion along the Seriana Valley. The analysis also showed that the groundwater flow could locally affect the slope stability, bringing about a reduction in the safety factor, but without reaching failure conditions. The sensitivity analysis carried out on the strength parameters pointed out that slope failures could be reached only for relevant reduction of the geotechnical characteristics. Such a result does not fit the real conditions observed on site, where a number of small failures often develop all along the hillslope. The 3-D model gave a more comprehensive analysis of the evolution of the DSGSD, also considering the border effects. The results showed that the convex profile of the slope favors the development of displacements along the lateral valley, with a relevant reduction in the safety factor, justifying the existing landslides.Keywords: deep seated gravitational slope deformation, Italy, landslide, numerical modeling
Procedia PDF Downloads 3651071 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4541070 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles
Authors: Kbab H, Hamitouche T
Abstract:
In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR
Procedia PDF Downloads 1331069 Modeling the Human Harbor: An Equity Project in New York City, New York USA
Authors: Lauren B. Birney
Abstract:
The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.Keywords: computer science, data science, equity, diversity and inclusion, STEM education
Procedia PDF Downloads 581068 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory
Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol
Abstract:
This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory
Procedia PDF Downloads 3011067 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds
Authors: Qiming Wang
Abstract:
Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds
Procedia PDF Downloads 1871066 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 3691065 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 431064 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 871063 Effect of Needle Height on Discharge Coefficient and Cavitation Number
Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate
Procedia PDF Downloads 1481062 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector
Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy
Abstract:
In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.Keywords: four quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency (PRF), Atmega 32 microcontrollers
Procedia PDF Downloads 389