Search results for: packed cell volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6240

Search results for: packed cell volume

3390 Breast Cancer Early Recognition, New Methods of Screening, and Analysis

Authors: Sahar Heidary

Abstract:

Breast cancer is a main public common obstacle global. Additionally, it is the second top reason for tumor death across women. Considering breast cancer cure choices can aid private doctors in precaution for their patients through future cancer treatment. This article reviews usual management centered on stage, histology, and biomarkers. The growth of breast cancer is a multi-stage procedure including numerous cell kinds and its inhibition residues stimulating in the universe. Timely identification of breast cancer is one of the finest methods to stop this illness. Entirely chief therapeutic administrations mention screening mammography for women aged 40 years and older. Breast cancer metastasis interpretations for the mainstream of deaths from breast cancer. The discovery of breast cancer metastasis at the initial step is essential for managing and estimate of breast cancer development. Developing methods consuming the exploration of flowing cancer cells illustrate talented outcomes in forecasting and classifying the initial steps of breast cancer metastasis in patients. In public, mammography residues are the key screening implement though the efficiency of medical breast checks and self-checkup is less. Innovative screening methods are doubtful to exchange mammography in the close upcoming for screening the overall people.

Keywords: breast cancer, screening, metastasis, methods

Procedia PDF Downloads 168
3389 Acute Toxic Effects of Zn(SO4) on Gill and Liver Tissues of Fresh Water Catfish Clarias batrachus (L.)

Authors: Muneesh Kumar, Rajesh Kumar, Sangeeta Devi

Abstract:

Heavy metals are a major problem because they are toxic and tend to accumulate in living organisms. This study was carried out with the aims of studying on histopathology of Zn(SO4) toxicity on gill and liver tissues of catfish (Clarias batrachus) within the period of 96 h. Totally, 140 fishes with mean weight 50±10 g were stocked in 12 aquariums with capacity of 200 L water and divided in to 3 trails including control, 4 ppm and 8 ppm of Zn with 3 replicates. Tissue samples were fixed by bouin’s solution and sectioned in 7 μm based on histological regular method and stained with Hematoxylin and Eosin (H&E) method for microscopic study within the period of 96 h. Results showed some damaged such as hyperplasia, telangiectasis and edema, necrosis of second filaments, jerky movement, aneurism, hyperemia and fusion of second filaments in gills; and cell atrophy, necrosis, fatty degeneration, hyperemia and bile stagnation at different treatments in comparison with control. Gill and liver tissue damages were severed with the increase of Zn concentration and days. Therefore, Zn had acute toxicity effects on gill and liver tissues in Catfish at 5 and 10 ppm concentrations.

Keywords: gill, liver, histopathology, zinc, Clarias batrachus

Procedia PDF Downloads 492
3388 In vivo Spectroscopic Study on the Effects of Ionising and Non-Ionising Radiation on Some Biophysical Properties of Rat Blood

Authors: S. H. Allehyani, H. S. Ibrahim, F. M. Ali, E. Sayd, T. Abou Aiad

Abstract:

The present study aimed to analyse the radiation risk associated with the exposure of haemoglobin (Hb) of rat red blood cells (rbcs) exposed to a 50-Hz 6-kV/m electric field, a fast neutron dose of 1 mSv, and mixed radiation from fast neutrons and an electric field distributed over a period of three weeks at a rate of 5 days/week and 8 hours/day. The dielectric measurements and the absorption spectra for the haemoglobin molecule in the frequency range of 1 kHz to 5 MHz were measured for all of the samples. The dielectric relaxation results demonstrated an increase in the dielectric increment (∆ε) for the rbcs from all of the irradiated animals, which indicates an increase in the electric dipole. Moreover, the results revealed a decrease in the relaxation time (τ) and the molecular radius (r) of the irradiated molecules, which indicates that the increase in ∆ε is mainly due to a pronounced increase in the centre of mass of the charge on the electric dipole of the Hb molecule. The results from the absorption spectra indicate that the ratio of met-haemoglobin to oxy-haemoglobin is altered by irradiation. Moreover, the results from the delayed effect studies show that the structure and function of the newly generated Hb molecules are altered and dissimilar to that of healthy Hb.

Keywords: rat red blood cell haemoglobin, dielectric properties, absorption spectra, biochemical analysis

Procedia PDF Downloads 367
3387 Study of Effective Parameters on Mechanical Properties of Toughened PP Compounds in Presence of Biofillers and Blowing Agents

Authors: Koosha Rezaei, Mehdi Moghri bidgoli, Mazyar Khakpour

Abstract:

Wood-plastic composites foam is one of the most used products were the industry today. In this study, composite foam polypropylene in the presence of different biofilers such as Spruce wood, wheat and rice husk as well as 3 different types toughening agents such as polyolefin elastomer, styrene butadiene styrene and styrene-ethylene butadiene styrene, and two types of cause blowing agents azodicarbonamide and sodium bicarbonate was prepared. For improving dispersion of biofilers, in the mixing process we used polypropylene coupling agent grafted with maleic anhydride. Due to the large number of variables, the statistical analysis of response surface to analyze the results of the impact test, tensile modulus and tensile strength and modeling were used. Co-rotating twine extruder was made composite melt mixing method and then to perform mechanical tests using injection molding, respectively.Images from electron microscopy showed cell sandwich structure in composite amply demonstrates.

Keywords: polypropylene, wood plastic composite foam, response surface analysis, morphology, mechanical properties

Procedia PDF Downloads 365
3386 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 268
3385 Unearthing SRSF1’s Novel Function in Binding and Unfolding of RNA G-Quadruplexes

Authors: Naiduwadura Ivon Upekala De Silva, Nathan Lehman, Talia Fargason, Trenton Paul, Zihan Zhang, Jun Zhang

Abstract:

SRSF1 governs splicing of over 1,500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but with other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.

Keywords: SR, SRSF!, RNA G-quadruplex, unfolding, RNA binding

Procedia PDF Downloads 20
3384 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 188
3383 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation

Authors: Sopheak Sorn, Kwok Yip Szeto

Abstract:

Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.

Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio

Procedia PDF Downloads 419
3382 Biological Activity of Mesenchymal Stem Cells in the Surface of Implants

Authors: Saimir Heta, Ilma Robo, Dhimiter Papakozma, Eduart Kapaj, Vera Ostreni

Abstract:

Introduction: The biocompatible materials applied to the implant surfaces are the target of recent literature studies. Methodologies: Modification of implant surfaces in different ways such as application of additional ions, surface microstructure change, surface or laser ultrasound alteration, or application of various substances such as recombinant proteins are among the most affected by articles published in the literature. The study is of review type with the main aim of finding the different ways that the mesenchymal cell reaction to these materials is, according to the literature, in the same percentage positive to the osteointegration process. Results: It is emphasized in the literature that implant success as a key evaluation key has more to implement implant treatment protocol ranging from dental health amenity and subsequent of the choice of implant type depending on the alveolar shape of the ridge level. Conclusions: Osteointegration is a procedure that should initially be physiologically independent of the type of implant pile material. With this physiological process, it can not "boast" for implant success or implantation depending on the brand of the selected implant, as the breadth of synthetic or natural materials that promote osteointegration is relatively large.

Keywords: mesenchymal cells, implants, review, biocompatible materials

Procedia PDF Downloads 86
3381 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

Authors: Mutwakil Nafi, Abed Elaziz El Amein, Muna El Dawi, Khalafala Salih, Osma Elbahi, Abed Elhalim Abou

Abstract:

Recently a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections the average of the ooids were ranged between 90% - 80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The development of infra structures and presence huge quantity of iron ore would make exploitation of the iron ore economic.

Keywords: HICS, Late Carboniferous age, oolitic iron ore, phosphorus

Procedia PDF Downloads 648
3380 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 451
3379 Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction

Authors: Melba D. Horton

Abstract:

Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest.

Keywords: diatoms, algae, biofuel, lipid, photobioreactor, frustule

Procedia PDF Downloads 188
3378 Conceptual Methods of Mitigating Matured Urban Tree Roots Surviving in Conflicts Growth within Built Environment: A Review

Authors: Mohd Suhaizan Shamsuddin

Abstract:

Urbanization exacerbates the environment quality and pressures of matured urban trees' growth and development in changing environment. The growth of struggled matured urban tree-roots by spreading within the existences of infrastructures, resulting in large damage to the structured and declined growth. Many physiological growths declined or damages by the present and installations of infrastructures within and nearby root zone. Afford to remain both matured urban tree and infrastructures as a service provider causes damage and death, respectively. Inasmuch, spending more expenditure on fixing both or removing matured urban trees as risky to the future environment as the mitigation methods to reduce the problems are unconcerned. This paper aims to explain mitigation method practices of reducing the encountered problems of matured urban tree-roots settling and infrastructures while modified urban soil to sustain at an optimum level. Three categories capturing encountered conflicts growth of matured urban tree-roots growth within and nearby infrastructures by mitigating the problems of limited soil spaces, poor soil structures and soil space barrier installations and maintenance. The limited soil space encountered many conflicts and identified six methods that mitigate the survival tree-roots, such as soil volume/mounding, soil replacement/amendment for the radial trench, soil spacing-root bridge, root tunneling, walkway/pavement rising/diverted, and suspended pavement. The limited soil spaces are mitigation affords of inadequate soil-roots and spreading root settling and modification of construction soil media since the barrier existed and installed in root trails or zones. This is the reason for enabling tree-roots spreading and finds adequate sources (nutrients, water uptake and oxygen), spaces and functioning to stability stand of root anchorage since the matured tree grows larger. The poor soil structures were identified as three methods to mitigate soil materials' problems, and fewer soil voids comprise skeletal soil, structural soil, and soil cell. Mitigation of poor soil structure is altering the existing and introducing new structures by modifying the quantities and materials ratio allowing more voids beneath for roots spreading by considering the above structure of foot and vehicle traffics functioning or load-bearing. The soil space barrier installations and maintenance recognized to sustain both infrastructures and tree-roots grown in limited spaces and its benefits, the root barrier installations and root pruning are recommended. In conclusion, these recommended methods attempt to mitigate the present problems encountered at a particular place and problems among tree-roots and infrastructures exist. The combined method is the best way to alleviates the conflicts since the recognized conflicts are between tree-roots and man-made while the urban soil is modified. These presenting methods are most considered to sustain the matured urban trees' lifespan growth in the urban environment.

Keywords: urban tree-roots, limited soil spaces, poor soil structures, soil space barrier and maintenance

Procedia PDF Downloads 199
3377 Dynamics of Follicle Vascular Perfusion, Dimensions, Antrum Growth, Circulating Angiogenic Mediators from Deviation to Ovulation

Authors: Elshymaa A. Abdelnaby, Amal M. Abo El-Maaty

Abstract:

This study aimed to investigate dynamics of dominant and subordinate follicles change in dimensions, vascularity and angiogenic hormones after completing deviation till ovulation. Five cyclic mares were subjected to daily blood sampling and rectal Doppler ultrasonographic examination along two estrous cycles. Using electronic calipers, three diameters were recorded for each follicle to estimate area and volume. Leptin, Insulin-like growth factor-I (IGF-1), nitric oxide (NO) and estradiol (E2) were measured. Area of color- and power- Doppler modes with area and circumference of the first (preovulatory) and subordinate follicles were measured in pixels. Follicles were classified into F1O (preovulatory), F2O (subordinate), F3O (third ovulatory) on the dominant ovary and F1C (first contra) and F2C (second contra) on the contralateral ovary. Days before ovulation significantly (P < 0.0001) affected diameter, circumference, area, volume, area/pixel and antrum area of the preovulatory follicle. With the increase of diameter, area, volume area/pixel, antrum area/pixel and circumference of F1O, those of all subordinates were decreasing. The blue blood flow area, power and power minus red blood flow area of F1O increased from day -6 till day of ovulation (day 0), but red blood flow area significantly decreased. F1O had the lowest percent of colored pixels and percent of the colored pixels without antrum. Estradiol and leptin increased from day -6 till day 0 but IGF-1 decreased till day -1 but NO achieved a peak on day -3 then decreased till day 0. In conclusion, antrum growth, blood flow and angiogenic hormones play a role in maturation and ovulation of the dominant follicle in mares.

Keywords: angiogenic hormones, blood flow, mare, preovulatory follicle

Procedia PDF Downloads 313
3376 Effects of Plasma Treatment on Seed Germination

Authors: Yong Ho Jeon, Youn Mi Lee, Yong Yoon Lee

Abstract:

Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application.

Keywords: cold plasma, cucumber, germination, SEM

Procedia PDF Downloads 315
3375 Clinico-pathological Study of Xeroderma Pigmentosa: A Case Series of Eight Cases

Authors: Kakali Roy, Sahana P. Raju, Subhra Dhar, Sandipan Dhar

Abstract:

Introduction: Xeroderma pigmentosa (XP) is a rare inherited (autosomal recessive) disease resulting from impairment in DNA repair that involves recognition and repair of ultraviolet radiation (UVR) induced DNA damage in the nucleotide excision repair pathway. Which results in increased photosensitivity, UVR induced damage to skin and eye, increased susceptibility of skin and ocular cancer, and progressive neurodegeneration in some patients. XP is present worldwide, with higher incidence in areas having frequent consanguinity. Being extremely rare, there is limited literature on XP and associated complications. Here, the clinico-pathological experience (spectrum of clinical presentation, histopathological findings of malignant skin lesions, and progression) of managing 8 cases of XP is presented. Methodology: A retrospective study was conducted in a pediatric tertiary care hospital in eastern India during a ten-year period from 2013 to 2022. A clinical diagnosis was made based on severe sun burn or premature photo-aging and/or onset of cutaneous malignancies at early age (1st decade) in background of consanguinity and autosomal recessive inheritance pattern in family. Results: The mean age of presentation was 1.2 years (range of 7month-3years), while three children presented during their infancy. Male to female ratio was 5:3, and all were born of consanguineous marriage. They presented with dermatological manifestations (100%) followed by ophthalmic (75%) and/or neurological symptoms (25%). Patients had normal skin at birth but soon developed extreme sensitivity to UVR in the form of exaggerated sun tanning, burning, and blistering on minimal sun exposure, followed by abnormal skin pigmentation like freckles and lentiginosis. Subsequently, over time there was progressive xerosis, atrophy, wrinkling, and poikiloderma. Six patients had varied degree of ocular involvement, while three of them had severe manifestation, including madarosis, tylosis, ectropion, Lagopthalmos, Pthysis bulbi, clouding and scarring of the cornea with complete or partial loss of vision, and ophthalmic malignancies. 50% (n=4) cases had skin and ocular pre-malignant (actinic keratosis) and malignant lesions, including melanoma and non melanoma skin cancer (NMSC) like squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in their early childhood. One patient had simultaneous occurrence of multiple malignancies together (SCC, BCC, and melanoma). Subnormal intelligence was noticed as neurological feature, and none had sensory neural hearing loss, microcephaly, neuroregression, or neurdeficit. All the patients had been being managed by a multidisciplinary team of pediatricians, dermatologists, ophthalmologists, neurologists and psychiatrists. Conclusion: Although till date there is no complete cure for XP and the disease is ultimately fatal. But increased awareness, early diagnosis followed by persistent vigorous protection from UVR, and regular screening for early detection of malignancies along with psychological support can drastically improve patients’ quality of life and life expectancy. Further research is required on formulating optimal management of XP, specifically the role and possibilities of gene therapy in XP.

Keywords: childhood malignancies, dermato-pathological findings, eastern India, Xeroderma pigmentosa

Procedia PDF Downloads 76
3374 Thidiazuron's Role in Murraya paniculata and Fortunella hindsii's in vitro Flowering

Authors: Hasan Basri Jumin, Mardaleni

Abstract:

Fortunella hindsii and Muraya paniculata are family members of Rutaceae and have potentially improved genetic diversity. Isolated protoplasts were cultured with media supplemented with 2.0 % glucose and 0.0, 0.001, 0.01, 0.1 or 1.0. 10.0 mg/1 thidiazuron (TDZ) and, thickened with 0.9% gelrite, and maintained under 16 h photoperiod at 52.9 μmol/m²/s light intensity. The media supplemented with 0.00 mg/l TDZ yielded the maximum plating efficiency, while 0.001 mg/l TDZ produced the highest percentage of shoot formation, approximately 80%. After being cultured on the same TDZ concentration for 12 days, the protoplasts that survived developed cell walls. Ninety days following the culture of protoplasts, Fortunella hindsii and Murraya paniculata underwent somatic embryogenesis to grow into plantlets. Thidiazuron has demonstrated efficacy in forming flower buds that grow normally. Fortunella hindsii and Murraya paniculata shoots that emerged from branch internodes flowered in vitro on half-strength MT basal media containing 0.001 to 0.01 mg/l TDZ and 2-3% sucrose after two months of culture, and they eventually went on to flower. Seventy five percent of the plants displayed flowering on medium supplemented with 0.001 mg/l TDZ. Among the segments of Fortunella hindsii and Murraya paniculata generated from branch internodes, a possible precocious and floral gradient was found.

Keywords: Fortunella-hindsii, in-vitro flowering, Murraya-paniculata, protoplast, thidiazuron

Procedia PDF Downloads 47
3373 Synthesis and Evaluation of Antioxidant Behavior of Some Indole-Based Melatonin Derivatives

Authors: Eddy Neuhaus, Hanif Shirinzadeh, Cigdem Karaaslan, Elif Ince, Hande Gurer-Orhan, Sibel Suzen

Abstract:

Reactive oxygen species (ROS) and oxidative stress can cause fatal damage to essential cell structures, including DNA. It is known that use of antioxidants could be advantageous in the prevention of various diseases such as cancer, cardiovascular diseases and neurodegenerative disorders. Since antioxidant properties of the indole ring-containing melatonin (MLT) has been described and evaluated, MLT-related compounds such as MLT metabolites and synthetic analogues are under investigation to determine which exhibit the highest activity with the lowest side-effects. Owing to indole and hydrazones appealing physiological properties and are mostly found in numerous biologically active compounds a series of indole-7-carbaldehyde hydrazone derivatives were synthesized, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Cytotoxicity potential of all indole-based MLT analogues was investigated both by lactate dehydrogenase leakage assay and by MTT assay. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) Research and Development Grant 112S599.

Keywords: melatonin, antioxidant activity, indole, hydrazone, oxidative stress

Procedia PDF Downloads 484
3372 Evaluation of Long Term Evolution Mobile Signal Propagation Models and Vegetation Attenuation in the Livestock Department at Escuela Superior Politécnica de Chimborazo

Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres

Abstract:

This article evaluates and compares three propagation models: the Okumura-Hata model, the Ericsson 9999 model, and the SUI model. The inclusion of vegetation attenuation in the area is also taken into account. These mathematical models aim to predict the power loss between a transmitting antenna (Tx) and a receiving antenna (Rx). The study was conducted in the open areas of the Livestock Department at the Escuela Superior Politécnica de Chimborazo (ESPOCH) University, located in the city of Riobamba, Ecuador. The necessary parameters for each model were calculated, considering LTE technology. The transmitting antenna belongs to the mobile phone company ”TUENTI” in Band 2, operating at a frequency of 1940 MHz. The reception power data in the area were empirically measured using the ”Network Cell Info” application. A total of 170 samples were collected, distributed across 19 radius, forming concentric circles around the transmitting antenna. The results demonstrate that the Okumura Hata urban model provides the best fit to the measured data.

Keywords: propagation models, reception power, LTE, power losses, correction factor

Procedia PDF Downloads 82
3371 Silk Fibroin-PVP-Nanoparticles-Based Barrier Membranes for Tissue Regeneration

Authors: Ivone R. Oliveira, Isabela S. Gonçalves, Tiago M. B. Campos, Leandro J. Raniero, Luana M. R. Vasconcellos, João H. Lopes

Abstract:

Originally, the principles of guided tissue/bone regeneration (GTR/GBR) were followed to restore the architecture and functionality of the periodontal system. In essence, a biocompatible polymer-based occlusive membrane is used as a barrier to prevent migration of epithelial and connective tissue to the regenerating site. In this way, progenitor cells located in the remaining periodontal ligament can recolonize the root area and differentiate into new periodontal tissues, alveolar bone, and new connective attachment. The use of synthetic or collagen-derived membranes with or without calcium phosphate-based bone graft materials has been the treatment used. Ideally, these membranes need to exhibit sufficient initial mechanical strength to allow handling and implantation, withstand the various mechanical stresses suffered during surgery while maintaining their integrity, and support the process of bone tissue regeneration and repair by resisting cellular traction forces and wound contraction forces during tissue healing in vivo. Although different RTG/ROG products are available on the market, they have serious deficiencies in terms of mechanical strength. Aiming to improve the mechanical strength and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the natural polymer (silk fibroin - FS) and the synthetic polymer poly(vinyl pyrrolidone - PVP) with graphene nanoplates (NPG) and gold nanoparticles (AuNPs), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of high voltage spinning and/or solution blowing and with a high production rate, enabling development on an industrial scale. Silk fibroin uniquely solved many of the problems presented by collagen and was used in this work because it has unique combined merits, such as programmable biodegradability, biocompatibility and sustainable large-scale production. Graphene has attracted considerable attention in recent years as a potential biomaterial for mechanical reinforcement because of its unique physicochemical properties and was added to improve the mechanical properties of the membranes associated or not with the presence of AuNPs, which have shown great potential in regulating osteoblast activity. The preparation of FS from silkworm cocoons involved cleaning, degumming, dissolution in lithium bromide, dialysis, lyophilization and dissolution in hexafluoroisopropanol (HFIP) to prepare the solution for electrospinning, and crosslinking tests were performed in methanol. The NPGs were characterized and underwent treatment in nitric acid for functionalization to improve the adhesion of the nanoplates to the PVP fibers. PVP-NPG membranes were produced with 0.5, 1.0 and 1.5 wt% functionalized or not and evaluated by SEM/FEG, FTIR, mechanical strength and cell culture assays. Functionalized GNP particles showed stronger binding, remaining adhered to the fibers. Increasing the graphene content resulted in higher mechanical strength of the membrane and greater biocompatibility. The production of FS-PVP-NPG-AuNPs hybrid membranes was performed by electrospinning in separate syringes and simultaneously the FS solution and the solution containing PVP-NPG 1.5 wt% in the presence or absence of AuNPs. After cross-linking, they were characterized by SEM/FEG, FTIR and behavior in cell culture. The presence of NPG-AuNPs increased the viability and the presence of mineralization nodules.

Keywords: barrier membranes, silk fibroin, nanoparticles, tissue regeneration.

Procedia PDF Downloads 12
3370 Physicochemical Properties, Antioxidant and Cytotoxic Activities of Extracts and Fractions from Phyllanthus amarus

Authors: Van Tang Nguyen, Jennette A. Sakoff, Christopher J. Scarlett

Abstract:

Phyllanthus amarus (P. amarus) has been used as a traditional herbal plant for the treatment of chronic ailments such as hepatitis, diabetes and cancer. The objectives of this study were to determine the physicochemical properties, antioxidant and cytotoxic activities of crude P. amarus extracts and fractions using MTT and CCK-8 assays for cytotoxic evaluation. The outcomes indicated that P. amarus methanol (PAM) extract had lower residual moisture (7.40%) and water activity (0.24) and higher contents of saponins, phenolics, flavonoids and proanthocyanidins (1657.86 mg escin equivalents, 250.45 mg gallic acid equivalents, 274.73 mg rutin equivalents and 61.22 mg catechin equivalents/g dried extract, respectively) than those of P. amarus water (PAW) extract, resulting antioxidant activity of PAM extract was significantly higher (P < 0.05) than that of PAW extract, PAM fractions and phyllanthin (a major compound in P. amarus). Cytotoxic activity of PAM extract for cancer cell lines of MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, SMA (glioblastoma) was higher than those of PAW extract and PAM fractions. Therefore, we can conclude that the PA extracts are a potential source for the development of natural antioxidant products and/or novel anticancer drugs.

Keywords: antioxidant, cytotoxicity, Phyllanthus amarus, physicochemical

Procedia PDF Downloads 325
3369 Audit of Intraoperative Ventilation Strategy in Prolonged Abdominal Surgery

Authors: Prabir Patel, Eugene Ming Han Lim

Abstract:

Introduction: Current literature shows that postoperative pulmonary complications following abdominal surgery may be reduced by using lower than conventional tidal volumes intraoperatively together with moderate levels of positive end expiratory pressure (PEEP). The recent studies demonstrated significant reduction demonstrated significant reduction in major complications in elective abdominal surgery through the use of lower tidal volumes (6-8 ml/kg predicted body weight), PEEP of 5 cmH20 and recruitment manoeuvres compared to higher ‘conventional’ volumes (10-12 mls/kg PBW) without lung recruitment. Our objective was to retrospectively audit current practice for patients undergoing major abdominal surgery in Sir Charles Gairdner Hospital. Methods: Patients over 18 undergoing elective general surgery lasting more than 3 hours and intubated during the duration of procedure were included in this audit. Data was collected over a 6 month period. Patients who had hepatic surgery, procedures necessitating one-lung ventilation, transplant surgery, documented history of pulmonary or intracranial hypertension were excluded. Results: 58 suitable patients were identified and notes were available for 54 patients. Key findings: Average peak airway pressure was 21cmH20 (+4), average peak airway pressure was less than 30 cmH20 in all patients, and less than 25 cmH20 in 80% of the cases. PEEP was used in 81% of the cases. Where PEEP was used, 75% used PEEP more than or equal to 5 cmH20. Average tidal volume per actual body weight was 7.1 ml/kg (+1.6). Average tidal volume per predicted body weight (PBW) was 8.8 ml/kg (+1.5). Average tidal volume was less than 10 ml/kg PBW in 90% of cases; 6-8 ml/kg PBW in 40% of the cases. There was no recorded use of recruitment manoeuvres in any cases. Conclusions: In the vast majority of patients undergoing prolonged abdominal surgery, a lung protective strategy using moderate levels of PEEP, peak airway pressures of less than 30 cmH20 and tidal volumes of less than 10 cmH20/kg PBW was utilised. A recent randomised control trial demonstrated benefit from utilising even lower volumes (6-8 mls/kg) based on findings in critical care patients, but this was compared to volumes of 10-12 ml/kg. Volumes of 6-8 ml/kg PBW were utilised in 40% of cases in this audit. Although theoretically beneficial, clinical benefit of lower volumes than what is currently practiced in this institution remains to be seen. The incidence of pulmonary complications was much lower than in the other cited studies and a larger data set would be required to investigate any benefit from lower tidal volume ventilation. The volumes used are comparable to results from published local and international data but PEEP utilisation was higher in this audit. Strategies that may potentially be implemented to ensure and maintain best practice include pre-operative recording of predicted body weight, adjustment of default ventilator settings and education/updates of current evidence.

Keywords: anaesthesia, intraoperative ventilation, PEEP, tidal volume

Procedia PDF Downloads 765
3368 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)

Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan

Abstract:

Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.

Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification

Procedia PDF Downloads 317
3367 New Strategy for Breeding of Artemisia annua L. for a Sustainable Production of the Antimalarial Drug Artemisinin

Authors: Nadali Babaeian Jelodar, Chan Lai Keng, Arvind Bhatt, Laleh Bordbar, Leow E Shuen, Kamaruzaman Mohamed

Abstract:

Recently artemisinin (the endoperoxide sesquiterpene lactone) has received considerable attention because of its antimalarial activity. It is isolated from the aerial part of the Artemisia annua L. Artemisinin is very difficult to synthesise also its production by mean of cell, tissue or organ cultures is very low. Presently, only its extraction from A. annua L. plants remains the only source of the drug. The reported yield of artemisinin from leaves of A. annua L. is very low and unstable, with yields typically less than 1% of leaf dry weight. To increase the percentage of artemisinin, researchers have been engaged in developing new varieties. A review concerning the breeding of A. annua L. is presented. The aim of this review is to bring together most of the available scientific research papers about the breeding conducted on the genus A. annua L., which is currently scattered across various publications. Through this review the authors hope to attract the attention of breeders throughout the world to focus on the unexplored potential of A. annua L. species. Also the future scope of this plant has been emphasized with a view of the importance of breeding of A. annua L. for increasing of artemisinin content. By releasing of new cultivar of A. annua L. and cultivation of this plant offers the opportunity to optimize yield and achieve a uniform, high quality product.

Keywords: Artemisia annua L., breeding, artemisinin, cultivation, medicinal plant

Procedia PDF Downloads 263
3366 Dexamethasone: Impact on Testicular Activity

Authors: Sadi-Guettaf Hassiba, Hadj-Bekkouche Fatima

Abstract:

Dexamethasone (Dex) is a synthetic glucocorticoid that is used in therapy. However prolonged treatments with high doses are often required. This causes side effects that interfere with the activity of several endocrine systems, including the gonadotropic axis. The aim of our study is to determine the effect of Dex on testicular function in prepubertal Wistar rats. Newborn Wistar rats are submitted to intraperitoneal injection of Dex (1μg of Dex dissolved in NaCl 0.9% / 5g bw) for 20 days and then sacrificed at the age of 40days. A control group received NaCl 0.9%. The rat is weighed daily. The plasmatic levels of testosterone, LH and FSH were measured by radioimmunoassay. A histo-morphometric study was performed on sections of testis. Treated groups showed a significant decrease in body weight (p < 0.05), testis weight (p < 0.05) and plasma levels of testosterone (p < 0.05), of LH (P < .05) and FSH (p> 0.05). There is a reduction of seminiferous tubules average diameter and also of the seminiferous epithelium thickness with an increasing of lumen tubular. The diameter of the Leydig cells and Sertoli cell nucleus is also significantly reduced. Spermatogenesis is blocked at the stage round spermatid unlike witnesses or elongated spermatid stage is found. These results suggest that Dex administered during neonatal life influences testicular activity in the long term.

Keywords: dexamethasone, FSH, LH, rat, testis, testosterone

Procedia PDF Downloads 269
3365 Synthesis, Characterization, and Biological Evaluation of 1,3,4-Mercaptooxadiazole Ether Derivatives Analogs as Antioxidant, Cytotoxic, and Molecular Docking Studies

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Oxadiazoles and their derivatives with thioether functionalities represent a new and exciting class of physiologically active heterocyclic compounds. Several molecules with these moieties play a vital role in pharmaceuticals because of their diverse biological activities. This paper describes a new class of 1,3,4- oxadiazole-2-thioethers with acetophenone, coumarin, and N-phenyl acetamide residues (S-alkylation), with the hope that the addition of various biologically active molecules will have a synergistic effect on anticancer activity. The structure of the synthesized title compounds was determined by the combined methods of IR, proton-NMR, carbon-13-NMR, and mass spectrometry. Further, all the newly prepared molecules were assessed against their antioxidant activity. Furthermore, four compounds were assessed for their molecular docking interactions and cytotoxicity activity. The synthesized derivatives have shown moderate antioxidant activity compared to the standard BHA. The IC50 of the tilted molecules (11b, 11c, 13b, and 14b) observed for in vitro anti-cancer activities were 11.20, 15.73, 59.61, and 27.66 g/ml at 72-hour treatment time against the A549 cell lines, respectively. The tested compounds' biological evaluation showed that 11b is the most effective molecule in the series.

Keywords: antioxidant activity, cytotoxicity activity, molecular docking, 1, 3, 4-Oxadiazole-2 thioether derivatives

Procedia PDF Downloads 90
3364 Phytochemicals from Enantia Chlorantha Stem Bark Inhibits the Activity ?-Amylase and ?-Glucosidase: Molecular Docking Studies

Authors: Hammed Tanimowo Aiyelabegan, Oluchukwu Franklin Aladi, Mutiu Adewumi Alabi, Raliat Abimbola Aladodo, Emmanuel Oladipupo Ajani, Abdulganiyu Giwa, Esther Owolabi

Abstract:

The study aimed to evaluate the inhibitory activities of ligands from Enantia chlorantha stem bark on α-amylase and α-glucosidase. In silico pharmacokinetic properties and docking scores were employed to analyse the inhibition using SwissADME and Autodock4.2, respectively. Results revealed that drug-likeness, pharmacokinetics and bioavailability radar of all the ligands except jatrorrhizine and acarbose falls within the radar according to the Lipinski rule of 5. The binding energies of the protein-ligand interactions also show that the ligand fits into the active site. The results obtained from this study show that the chemical constituents from Enantia chlorantha stem bark may bring about positive physiological changes in a patient suffering from diabetes mellitus. Further in vitro studies on diabetes cell lines and in vivo studies on the animal may validate these compounds for diabetes treatment. These phytoconstituents could help in the development of novel anti-diabetic molecules.

Keywords: diabetes mellitus, ?-amylase, ?-glucosidase, in silico, Enantia chlorantha stem bark

Procedia PDF Downloads 173
3363 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis

Procedia PDF Downloads 335
3362 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes

Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang

Abstract:

The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.

Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations

Procedia PDF Downloads 248
3361 Combined Optical Coherence Microscopy and Spectrally Resolved Multiphoton Microscopy

Authors: Bjorn-Ole Meyer, Dominik Marti, Peter E. Andersen

Abstract:

A multimodal imaging system, combining spectrally resolved multiphoton microscopy (MPM) and optical coherence microscopy (OCM) is demonstrated. MPM and OCM are commonly integrated into multimodal imaging platforms to combine functional and morphological information. The MPM signals, such as two-photon fluorescence emission (TPFE) and signals created by second harmonic generation (SHG) are biomarkers which exhibit information on functional biological features such as the ratio of pyridine nucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) in the classification of cancerous tissue. While the spectrally resolved imaging allows for the study of biomarkers, using a spectrometer as a detector limits the imaging speed of the system significantly. To overcome those limitations, an OCM setup was added to the system, which allows for fast acquisition of structural information. Thus, after rapid imaging of larger specimens, navigation within the sample is possible. Subsequently, distinct features can be selected for further investigation using MPM. Additionally, by probing a different contrast, complementary information is obtained, and different biomarkers can be investigated. OCM images of tissue and cell samples are obtained, and distinctive features are evaluated using MPM to illustrate the benefits of the system.

Keywords: optical coherence microscopy, multiphoton microscopy, multimodal imaging, two-photon fluorescence emission

Procedia PDF Downloads 511