Search results for: nonlinear regression (NLR)
1633 Percentile Reference Values of Vertical Jumping Performances and Anthropometric Characteristics in Athletic Tunisian Children and Adolescents
Authors: Chirine Aouichaoui, Mohamed Tounsi, Ines Mrizak, Zouhair Tabka, Yassine Trabelsi
Abstract:
The aim of this study was to provide percentile values for vertical jumping performances and anthropometric characteristics for athletic Tunisian children. One thousand and fifty-five athletic Tunisian children and adolescents (643 boys and 412 girls) aged 7-18 years were randomly selected to participate in our study. They were asked to perform squat jumps and countermovement jumps. For each measurement, a least square regression model with high order polynomials was fitted to predict mean and standard deviation of vertical jumping parameters and anthropometric variables. Smoothed percentile curves and percentile values for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles are presented for boys and girls. In conclusion, percentiles values of vertical jumping performances and anthropometric characteristics are provided. The new Tunisian reference charts obtained can be used as a screening tool to determine growth disorders and to estimate the proportion of adolescents with high or low muscular strength levels. This study may help in verifying the effectiveness of a specific training program and detecting highly talented athletes.Keywords: percentile values, jump height, leg muscle power, athletes, anthropometry
Procedia PDF Downloads 4281632 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method
Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong
Abstract:
Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model
Procedia PDF Downloads 3721631 Efficiency in Islamic Banks: Some Empirical Evidences in Indonesian Finance Market
Authors: Ahmed Sameer El Khatib
Abstract:
The aim of the present paper is to examine the revenue efficiency of the Indonesian Islamic banking sector. The study also seeks to investigate the potential internal (bank specific) and external (macroeconomic) determinants that influence the revenue efficiency of Indonesian domestic Islamic banks. We employ the whole gamut of domestic and foreign Islamic banks operating in the Indonesian Islamic banking sector during the period of 2009 to 2018. The level of revenue efficiency is computed by using the Data Envelopment Analysis (DEA) method. Furthermore, we employ a panel regression analysis framework based on the Ordinary Least Square (OLS) method to examine the potential determinants of revenue efficiency. The results indicate that the level of revenue efficiency of Indonesian domestic Islamic banks is lower compared to their foreign Islamic bank counterparts. We find that bank market power, liquidity, and management quality significantly influence the improvement in revenue efficiency of the Indonesian domestic Islamic banks during the period under study. By calculating these efficiency concepts, we can observe the efficiency levels of the domestic and foreign Islamic banks. In addition, by comparing both cost and profit efficiency, we can identify the influence of the revenue efficiency on the banks’ profitability.Keywords: Islamic Finance, Islamic Banks, Revenue Efficiency, Data Envelopment Analysis
Procedia PDF Downloads 2421630 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 1011629 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes
Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany
Abstract:
In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.Keywords: IDA, near-fault, probabilistic performance assessment, seismic fragility, strongback system, uncertainty
Procedia PDF Downloads 1151628 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment
Authors: Vera Karla S. Caingles, Glen A. Lorenzo
Abstract:
Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.Keywords: collapsibility, correlation, expansiveness, landslide, plasticity
Procedia PDF Downloads 1601627 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures
Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli
Abstract:
In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel
Procedia PDF Downloads 1311626 The Role of Interpersonal and Institutional Trusts for the Public Support of Welfare State
Authors: Nazim Habibov, Alena Auchynnikava, Lida Fan
Abstract:
The exploration of the relationship between social trust and the support of the welfare system in transitional countries has attracted growing interests in recent decades. This study estimates the effects of interpersonal and institutional trust on the support of the welfare system in 27 countries in Eastern Europe the former Soviet Union. We estimate the data sets from the Life-in-Transition Survey 2010 and 2016 with binomial regression models. The results indicate that both interpersonal and institutional trust have positive effects on the support for the welfare system in all the three areas under investigation: helping the needy, public healthcare and public education, both in the less developed countries of the former Soviet Union and in the more developed Eastern European countries. Furthermore, the positive effects of interpersonal and institutional trust on support for helping the needy, public healthcare and public education were found to grow over time. In conclusion, this study confirms that interpersonal and institutional trusts have positive effects for the public support of the welfare system in these transitional countries under investigation, regardless of their level of development.Keywords: central and eastern Europe, former Soviet union, international social welfare policy, comparative social welfare policy
Procedia PDF Downloads 1301625 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 1961624 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters
Authors: Mansoor Soomro
Abstract:
The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.Keywords: current harmonics, power quality, passive filters, power electronic converters
Procedia PDF Downloads 3011623 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure
Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh
Abstract:
The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design
Procedia PDF Downloads 2221622 Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance
Authors: Seongryong Kang, Woonjin Kim, Sungjoo Lee
Abstract:
Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer.Keywords: diversity, intensity, international technology acquisition, performance, technology transfer
Procedia PDF Downloads 3611621 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers
Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe
Abstract:
Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.Keywords: virtual container yard, legal, maritime law, inventory
Procedia PDF Downloads 1651620 Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China
Authors: Deginet Aklilu, Tianqi Wang, Endwoke Amsalu, Wei Feng, Zhiwei Li, Xia Li, Lixin Tao, Yanxia Luo, Moning Guo, Xiangtong Liu, Xiuhua Guo
Abstract:
Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.Keywords: admission, Beijing, cardiovascular diseases, distributed lag non linear model, temperature
Procedia PDF Downloads 631619 The Impact of Artificial Intelligence on Construction Projects
Authors: Muller Salah Zaky Toudry
Abstract:
The complexity arises in defining the development great due to its notion, based on inherent market situations and their requirements, the diverse stakeholders itself and their desired output. An quantitative survey based totally approach was adopted in this optimistic examine. A questionnaire-primarily based survey was performed for the assessment of production fine belief and expectations within the context of excellent development technique. The survey feedback of experts of the leading creation corporations/companies of Pakistan production industry have been analyzed. The monetary ability, organizational shape, and production revel in of the construction companies shaped basis for their selection. The great belief become located to be venture-scope-orientated and taken into consideration as an extra cost for a production assignment. Any excellent improvement technique changed into expected to maximize the profit for the employer, via enhancing the productiveness in a creation project. The look at is beneficial for the construction specialists to evaluate the prevailing creation great perception and the expectations from implementation of any pleasant improvement approach in production projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception client loyalty, NPS, pre-construction, schedule reduction
Procedia PDF Downloads 161618 Investigating the Effects of Psychological and Socio-Cultural Factors on the Tendency of Villagers to Use E-Banking Services: Case Study of Agricultural Bank Branches in Ilam
Authors: Nahid Ehsani, Amir Hossein Rezvanfar
Abstract:
The main objective of this study is to investigate psychological and socio-cultural factors effective on the tendency of the villagers to use e-banking services. The current paper is an applied study considering its objectives. The main data gathering tool in the current study is a made questionnaire which is designed and executed based on the conceptual background of the subject matter and the objectives and hypotheses of the study. The statistical population of this study includes all the customers of rural branches of Agricultural Bank in Ilam Province (N=82885). Among these 120 participants were chosen through sample size determination formula and they were studied using stratified random sampling method. In the analytical statistics level the results obtained from calculating Spearman’s Correlative Coefficient showed that socio-cultural and psychological factors had a significant impact of the extent of the tendency of the villagers to use e-banking services of the Agricultural Bank at the 99% level. Furthermore, stepwise multiple regression analysis showed that both sets of psychological factors as well as socio-economic factors were able to explain 50 percent of the variance of the independent variable; namely the tendency of villagers to use e-banking services.Keywords: e-banking, agricultural bank, tendency, socio-economic factors, psychological factors
Procedia PDF Downloads 5321617 The Effect of Region of Residence on Fertility in Nigeria
Authors: Motlatso Rampedi
Abstract:
Nigeria has the fifth highest Total Fertility Rate in Sub-Saharan Africa at 5.5 children born to a woman. Some demographic research has found that there is an association between region of residence and fertility in Nigeria, with the Northern regions pertaining to high fertility and the Southern regions pertaining to low fertility levels. Even so, little attention has been given to understanding the effect of region of residence on fertility. Instead, a significant amount of research has been conducted on exploring the proximate determinants of fertility in Nigeria. The objective of this study was to test whether there is an association between region of residence and fertility in Nigeria. Using a sample size of 38 948 women aged 15-49 derived from the 2013 NDHS and the Poisson regression model for analysis, the study has found that region of residence has a significant effect on fertility. Moreover, the ANOVA test has shown that there is a socioeconomic disparity by region of residence in Nigeria. The Northern regions of Nigeria have shown to have higher levels of fertility as compared to the Southern regions. Therefore, while proximate determinants of fertility and socio-demographic characteristics of women are important, region of residence remains one of the fundamental determinants of fertility. Given these findings, it is recommended that government should not exhaust its resources or focus its fertility reduction policies and programmes at entire populations but target specific regions where fertility is most prevalent.Keywords: high fertility, region, socioeconomic disparity, socio-demographic characteristics
Procedia PDF Downloads 3081616 Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder
Authors: Masaki Yamaguchi, Daimei Sasayama, Shinsuke Washizuka
Abstract:
The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.Keywords: cytokine, saliva, attention deficit hyperactivity disorder, child
Procedia PDF Downloads 1441615 Effect of Internal Control Weaknesses and Audit Opinion to the Findings of State Losses
Authors: Wiji Wijaya
Abstract:
The aim of this research is to examine the effect of internal control weaknesses and audit opinion on the state’s loss findings of audit compliance to the regulation in public sector. The samples of this research consisted of 175 local government financial statements in the area of Central Java Province at 2009 until 2013. Area sampling design was used to select the financial statements. This study using quantitative descriptive statistical analysis and regression was run for data analysis and hypothesis examination. Result of this study indicated that internal control weaknesses and audit opinion contributes a positive influence which is significant to the state’s loss findings of audit compliance to the regulation. The internal control weaknesses that affect the state's loss finding are weakness control system of accounting and reporting with the value of the critical ratio 0.010 p 2.613 ; weakness budget execution control system with critical ratio value of 3.421 p 0.001 and weaknesses internal control structure with critical ratio value of 2.246 p 0.026 . While the audit opinion with a critical ratio value of 4.401 p 0.000. The implications of this research so that policy makers at the local government should give more attention to the implementation and improvement of internal control system.Keywords: audit compliance findings, state’s loss, audit opinion, internal control, local government
Procedia PDF Downloads 3801614 Spatial REE Geochemical Modeling at Lake Acıgöl, Denizli, Turkey: Analytical Approaches on Spatial Interpolation and Spatial Correlation
Authors: M. Budakoglu, M. Karaman, A. Abdelnasser, M. Kumral
Abstract:
The spatial interpolation and spatial correlation of the rare earth elements (REE) of lake surface sediments of Lake Acıgöl and its surrounding lithological units is carried out by using GIS techniques like Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR) techniques. IDW technique which makes the spatial interpolation shows that the lithological units like Hayrettin Formation at north of Lake Acigol have high REE contents than lake sediments as well as ∑LREE and ∑HREE contents. However, Eu/Eu* values (based on chondrite-normalized REE pattern) show high value in some lake surface sediments than in lithological units and that refers to negative Eu-anomaly. Also, the spatial interpolation of the V/Cr ratio indicated that Acıgöl lithological units and lake sediments deposited in in oxic and dysoxic conditions. But, the spatial correlation is carried out by GWR technique. This technique shows high spatial correlation coefficient between ∑LREE and ∑HREE which is higher in the lithological units (Hayrettin Formation and Cameli Formation) than in the other lithological units and lake surface sediments. Also, the matching between REEs and Sc and Al refers to REE abundances of Lake Acıgöl sediments weathered from local bedrock around the lake.Keywords: spatial geochemical modeling, IDW, GWR techniques, REE, lake sediments, Lake Acıgöl, Turkey
Procedia PDF Downloads 5541613 Effects of Handheld Video Games on Interpersonal Relationships: A Two-Wave Panel Study on Elementary School Students
Authors: Kanae Suzuki
Abstract:
Handheld video games are popular communication tools among Japanese elementary school students today. This study aims to examine the effects of the use of handheld video games on interpersonal relationships of the students in real and virtual worlds. A two-wave panel survey was conducted for students of ten elementary schools at an interval of approximately six months. The survey questionnaire included questions about the average amount of time spent playing a handheld video game during the past one month, the frequency of communication with players during game play, and the interpersonal relationships, such as the number of real and virtual friends the students have. A multiple regression model was constructed for 324 students to examine causal relationships. The results indicated that the more frequently the students communicated with other players while playing games, the number of the real friends tended to increase. In contrast, no significant effect of the total time spent playing games was found on interpersonal relationships. The findings suggested that communication during game play is an important factor for improving interpersonal relationships of this age group.Keywords: communication, real friend, social adjustment, virtual friend
Procedia PDF Downloads 4911612 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6131611 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 1261610 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling
Procedia PDF Downloads 2981609 The Moderation Effect of Smart Phone Addiction in Relationship between Self-Leadership and Innovative Behavior
Authors: Gi-Ryun Park, Gye-Wan Moon, Dong-Hoon Yang
Abstract:
This study aims to explore the positive effects of self-leadership and innovative behavior that'd been proven in the existing researches proactively and understand the regulation effects of smartphone addiction which has recently become an issue in Korea. This study conducted a convenient sampling of college students attending the four colleges located at Daegu. A total of 210 questionnaires in 5-point Likert scale were distributed to college students. Among which, a total of 200 questionnaires were collected for our final analysis data. Both correlation analysis and regression analysis were carried out to verify those questionnaires through SPSS 20.0. As a result, college students' self-leadership had a significantly positive impact on innovative behavior (B= .210, P= .003). In addition, it is found that the relationship between self-leadership and innovative behavior can be adjusted depending on the degree of smartphone addiction in college students (B= .264, P= .000). This study could first understand the negative effects of smartphone addiction and find that if students' self-leadership is improved in terms of self-management and unnecessary use of smartphone is controlled properly, innovative behavior can be improved. In addition, this study is significant in that it attempts to identify a new impact of smartphone addiction with the recent environmental changes, unlike the existing researches that'd been carried out from the perspective of organizational behavior theory.Keywords: innovative behavior, revolutionary behavior, self-leadership, smartphone addiction
Procedia PDF Downloads 2581608 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades
Authors: Abdullah Alnutayfat, Alexander Sutin
Abstract:
One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation
Procedia PDF Downloads 851607 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris
Authors: Suhani Srivastava
Abstract:
This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa
Procedia PDF Downloads 231606 Health Belief Model to Predict Sharps Injuries among Health Care Workers at First Level Care Facilities in Rural Pakistan
Authors: Mohammad Tahir Yousafzai, Amna Rehana Siddiqui, Naveed Zafar Janjua
Abstract:
We assessed the frequency and predictors of sharp injuries (SIs) among health care workers (HCWs) at first level care facilities (FLCF) in rural Pakistan. HCWs working at public clinic (PC), privately owned licensed practitioners’ clinic (LPC) and non-licensed practitioners’ clinic (NLC) were interviewed on universal precautions (UPs) and constructs of health belief model (HBM) to assess their association with SIs through negative-binomial regression. From 365 clinics, 485 HCWs were interviewed. Overall annual rate of Sis was 192/100 HCWs/year; 78/100 HCWs among licensed prescribers, 191/100 HCWs among non-licensed prescribers, 248/100 HCWs among qualified assistants, and 321/100 HCWs among non-qualified assistants. Increasing knowledge score about bloodborne pathogens (BBPs) transmission (rate-ratio (RR): 0.93; 95%CI: 0.89–0.96), fewer years of work experience, being a non-licensed prescriber (RR: 2.02; 95%CI: 1.36–2.98) licensed (RR: 2.86; 9%CI: 1.81–4.51) or non-licensed assistant (RR: 2.78; 95%CI: 1.72–4.47) compared to a licensed prescriber, perceived barriers (RR: 1.06;95%CI: 1.03–1.08), and compliance with UPs scores (RR: 0.93; 95%CI: 0.87–0.97) were significant predictors of SIs. Improved knowledge about BBPs, compliance with UPs and reduced barriers to follow UPs could reduce SIs to HCWs.Keywords: health belief model, sharp injuries, needle stick injuries, healthcare workers
Procedia PDF Downloads 3121605 Academic Influence of Social Network Sites on the Collegiate Performance of Technical College Students
Authors: Jameson McFarlane, Thorne J. McFarlane, Leon Bernard
Abstract:
Social network sites (SNS) is an emerging phenomenon that is here to stay. The popularity and the ubiquity of the SNS technology are undeniable. Because most SNS are free and easy to use people from all walks of life and from almost any age are attracted to that technology. College age students are by far the largest segment of the population using SNS. Since most SNS have been adapted for mobile devices, not only do you find students using this technology in their study, while working on labs or on projects, a substantial number of students have been found to use SNS even while listening to lectures. This study found that SNS use has a significant negative impact on the grade point average of college students particularly in the first semester. However, this negative impact is greatly diminished by the end of the third semester partly because the students have adjusted satisfactorily to the challenges of college or because they have learned how to adequately manage their time. It was established that the kinds of activities the students are engaged in during the SNS use are the leading factor affecting academic performance. Of those activities, using SNS during a lecture or while studying is the foremost contributing factor to lower academic performance. This is due to “cognitive” or “information” bottleneck, a condition in which the students find it very difficult to multitask or to switch between resources leading to inefficiency in information retention and thus, educational performance.Keywords: social network sites, social network analysis, regression coefficient, psychological engagement
Procedia PDF Downloads 1791604 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 168