Search results for: gel strength prediction
3004 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering
Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris
Abstract:
Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibilityKeywords: biomaterials, nanocomposites, scaffolds, tissue engineering
Procedia PDF Downloads 3163003 TransDrift: Modeling Word-Embedding Drift Using Transformer
Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur
Abstract:
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.Keywords: NLP applications, transformers, Word2vec, drift, word embeddings
Procedia PDF Downloads 913002 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems
Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai
Abstract:
In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU
Procedia PDF Downloads 1553001 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 513000 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools
Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad
Abstract:
Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.Keywords: EDM, cyrogenic, TWR, MRR
Procedia PDF Downloads 4572999 Fear of Falling and Physical Activities: A Comparison Between Rural and Urban Elderly People
Authors: Farhad Azadi, Mohammad Mahdi Mohammadi, Mohsen Vahedi, Zahra Mahdiin
Abstract:
Context: The aging population is growing all over the world and maintaining physical activity is essential for healthy aging. However, fear of falling is a major obstacle to physical activity among the elderly. The aim of this study is to investigate and compare the relationship between fear of falling and physical activity in Iranian urban and rural elderly. Research Aim: The main aim of this cross-sectional analytical study is to investigate and compare the relationship between fear of falling and physical activity in Iranian rural and urban elderly. Methodology: The study used simple non-probability sampling to select 350 participants aged 60 years and older from rural and urban areas of Konarak, Sistan and Baluchistan provinces in Iran. The Persian versions of the Falls Efficacy Scale - International, Rapid Physical Activity Assessment, Activities of Daily Living, and Instrumental Activities of Daily Living questionnaires were used to assess fear of falling and physical activity. The data were analyzed using Pearson correlation tests. Findings: The study found a statistically significant negative correlation between fear of falling and physical activity, as measured by ADL, IADL, and RAPA1(aerobic ), in all elderly and rural and urban elderly (p<0.001). Fear of falling was higher in rural areas, while physical activity levels measured by ADL and RAPA1 were higher in urban areas. No significant difference was found between the two groups in IADL and RAPA2 (strength and flexibility) scores. Theoretical Importance: This study highlights the importance of considering the fear of falling as a significant obstacle to proper physical activity, especially among the elderly living in rural areas. Furthermore, the study provides insight into the difference between rural and urban elderly people in terms of fear of falling and physical activity. Data Collection and Analysis Procedures: Data was collected through questionnaires and analyzed using Pearson correlation tests. Questions Addressed: The study attempted to answer the following questions: Is there a relationship between fear of falling and physical activity in Iranian urban and rural elderly people? Is there a difference in fear of falling and physical activity between rural and urban elderly? Conclusion: Fear of falling is a major obstacle to physical activity among the elderly, especially in rural areas. The study found a significant negative correlation between fear of falling and physical activity in all elderly and rural and urban elderly. In addition, urban and rural elderly have differences in aerobic activity levels, but they do not differ in terms of flexibility and strength. Therefore, proper interventions are required to ensure that the elderly can maintain physical activity, especially in rural and deprived areas.Keywords: aged, fear of falling, physical activity, urban population, rural population
Procedia PDF Downloads 702998 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 892997 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.Keywords: cognitive decline, functional connectivity, MCI, MMSE
Procedia PDF Downloads 3832996 Evaluation of Particle Settling in Flow Chamber
Authors: Abdulrahman Alenezi, B. Stefan
Abstract:
Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber
Procedia PDF Downloads 1362995 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 722994 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation
Authors: Aritras Roy, Rinku Mukherjee
Abstract:
The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.Keywords: post-stall, unsteady, wing, aerodynamics
Procedia PDF Downloads 3702993 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention
Authors: Ashish Kumar, Kaptan Singh, Amit Saxena
Abstract:
Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.Keywords: K-nearest neighbor, random forest, decision tree, pre-processing
Procedia PDF Downloads 932992 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength
Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma
Abstract:
The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.
Procedia PDF Downloads 572991 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products
Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch
Abstract:
Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method
Procedia PDF Downloads 2782990 Optimization of Urea Water Solution Injector for NH3 Uniformity Improvement in Urea-SCR System
Authors: Kyoungwoo Park, Gil Dong Kim, Seong Joon Moon, Ho Kil Lee
Abstract:
The Urea-SCR is one of the most efficient technologies to reduce NOx emissions in diesel engines. In the present work, the computational prediction of internal flow and spray characteristics in the Urea-SCR system was carried out by using 3D-CFD simulation to evaluate NH3 uniformity index (NH3 UI) and its activation time according to the official New European Driving Cycle (NEDC). The number of nozzle and its diameter, two types of injection directions, and penetration length were chosen as the design variables. The optimal solutions were obtained by coupling the CFD analysis with Taguchi method. The L16 orthogonal array and small-the-better characteristics of the Taguchi method were used, and the optimal values were confirmed to be valid with 95% confidence and 5% significance level through analysis of variance (ANOVA). The results show that the optimal solutions for the NH3 UI and activation time (NH3 UI 0.22) are obtained by 0.41 and 0,125 second, respectively, and their values are improved by 85.0% and 10.7%, respectively, compared with those of the base model.Keywords: computational fluid dynamics, NH3 uniformity index, optimization, Taguchi method, Urea-SCR system, UWS injector
Procedia PDF Downloads 2672989 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication
Authors: Fuad M. Alkoot
Abstract:
We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation
Procedia PDF Downloads 2782988 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System
Authors: Rajan Goyal, S. Lamba, S. Annapoorni
Abstract:
The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve
Procedia PDF Downloads 1902987 Near-Infrared Spectrometry as an Alternative Method for Determination of Oxidation Stability for Biodiesel
Authors: R. Velvarska, A. Vrablik, M. Fiedlerova, R. Cerny
Abstract:
Near-infrared spectrometry (NIR) was tested as a rapid and alternative tool for determination of biodiesel oxidation stability. A PetroOxy method is standardly used for the determination, but this method is hazardous due to the possibility of explosion and ignition of flammable fuels. The second disadvantage is time consuming. The near-infrared spectrometry served for the development of the calibration model which was composed of 133 real samples (calibration standards). The reference values of these standards were obtained by PetroOxy method. Many chemometric diagnostics were used for the development of the final NIR model with the aim to have accurate prediction of the oxidation stability. The final NIR model was validated by 30 validation standards. The repeatability was determined as well with the acceptable residual standard deviation (8.59 %). The NIR spectrometry has proved to be an accurate alternative method for the determination of biodiesel oxidation stability with advantages as the time and cost saving, non-destructive character of analyzing and the possibility of online monitoring in safe mode.Keywords: biodiesel, fatty acid methyl ester, NIR, oxidation stability
Procedia PDF Downloads 1752986 Concussion Prediction for Speed Skater Impacting on Crash Mats by Computer Simulation Modeling
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Concussion for speed skaters often occurs when skaters fall on the ice and impact the crash mats during practices and competition races. Gaining insight into the impact of interactions is of essential interest as it is directly related to skaters’ potential health risks and injuries. Precise concussion measurements are challenging and very difficult, making computer simulation the only reliable way to analyze accidents. This research aims to create the crash mat and skater’s multi-body model using Solidworks, develop a computer simulation model for skater-mat impact using ANSYS software, and predict the skater’s concussion degree by evaluating the “head injury criteria” (HIC) through the resulting accelerations. The developed method and results help understand the relationship between impact parameters and concussion risk for speed skaters and inform the design of crash mats and skating rink layouts more specifically by considering athletes’ health risks.Keywords: computer simulation modeling, concussion, impact, speed skater
Procedia PDF Downloads 1412985 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion
Procedia PDF Downloads 772984 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling
Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada
Abstract:
In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic
Procedia PDF Downloads 3232983 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function
Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu
Abstract:
Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model
Procedia PDF Downloads 3932982 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4662981 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment
Authors: Muhammad Muzamal, Anders Rasmuson
Abstract:
Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment
Procedia PDF Downloads 4012980 Catalytic Cracking of Hydrocarbon over Zeolite Based Catalysts
Authors: Debdut Roy, Vidyasagar Guggilla
Abstract:
In this research, we highlight our exploratory work on modified zeolite based catalysts for catalytic cracking of hydrocarbons for production of light olefin i.e. ethylene and propylene. The work is focused on understanding the catalyst structure and activity correlation. Catalysts are characterized by surface area and pore size distribution analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), Temperature Programmed Desorption (TPD) of ammonia, pyridine Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric Analysis (TGA) and correlated with the catalytic activity. It is observed that the yield of lighter olefins increases with increase of Bronsted acid strength.Keywords: catalytic cracking, zeolite, propylene, structure-activity correlation
Procedia PDF Downloads 2182979 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 792978 Examining the Effects of Production Method on Aluminium A356 Alloy and A356-10%SiCp Composite for Hydro Turbine Bucket Application
Authors: Williams S. Ebhota, Freddie L. Inambao
Abstract:
This study investigates the use of centrifugal casting method to fabricate functionally graded aluminium A356 Alloy and A356-10%SiCp composite for hydro turbine bucket application. The study includes the design and fabrication of a permanent mould. The mould was put into use and the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some specimens were given T6 heat treatment and the specimens were prepared for different examinations accordingly. The SiCp particles were found to be more at inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite was recorded at the inner periphery to be 60 BRN and 95BRN, respectively. And these values were appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite, respectively. It was observed that the ultimate tensile stress and yield tensile stress prediction curves show the same trend.Keywords: A356 alloy, A356-10%SiCp composite, centrifugal casting, Pelton bucket, turbine blade
Procedia PDF Downloads 2802977 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2392976 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds
Authors: N. Stevulova, I. Schwarzova
Abstract:
The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties
Procedia PDF Downloads 3492975 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine
Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori
Abstract:
Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.Keywords: LR115, radon concentration, rime series, underground goldmine
Procedia PDF Downloads 46