Search results for: packed cell volume
3419 Cell Biomass and Lipid Productivities of Meyerella planktonica under Autotrophic and Heterotrophic Growth Conditions
Authors: Rory Anthony Hutagalung, Leonardus Widjaja
Abstract:
Microalgae Meyerella planktonica is a potential biofuel source because it can grow in bulk in either autotrophic or heterotrophic condition. However, the quantitative growth of this algal type is still low as it tends to precipitates on the bottom. Beside, the lipid concentration is still low when grown in autotrophic condition. In contrast, heterotrophic condition can enhance the lipid concentration. The combination of autotrophic condition and agitation treatment was conducted to increase the density of the culture. On the other hand, a heterotrophic condition was set up to raise the lipid production. A two-stage experiment was applied to increase the density at the first step and to increase the lipid concentration in the next step. The autotrophic condition resulted higher density but lower lipid concentration compared to heterotrophic one. The agitation treatment produced higher density in both autotrophic and heterotrophic conditions. The two-stage experiment managed to enhance the density during the autotrophic stage and the lipid concentration during the heterotrophic stage. The highest yield was performed by using 0.4% v/v glycerol as a carbon source (2.9±0.016 x 106 cells w/w) attained 7 days after the heterotrophic stage began. The lipid concentration was stable starting from day 7.Keywords: agitation, glycerol, heterotrophic, lipid productivity, Meyerella planktonica
Procedia PDF Downloads 3373418 Intelligent Wireless Patient Monitoring and Tracking System
Authors: Ch. Sandeep Kumar Subudhi, S. Sivanandam
Abstract:
Our system is to monitor the human body temperature, blood pressure (BP), Pulse Rate and ECG and tracking the patient location. In our system the body temperature is detected by using LM35 temperature sensor, blood pressure is detected by the BP sensor, pulse rate is detected by the ear plug pulse sensor and the ECG is detected by the three lead ECG sensor in the working environment of the patient. The sensed information is sent to the PIC16F877 microcontroller through signal conditioning circuit. A desired amount of sensor value is set and if it is exceeded preliminary steps should be taken by indication by buzzer. The sensor information will be transmitted from the patient unit to the main controller unit with the help of Zigbee communication medium which is connected with the microcontrollers in the both units. The main controller unit will send those sensor data as well as the location of that patient by the help of GPS module to the observer/doctor. The observer/doctor can receive the SMS sent by GSM module and further decision can be taken. The message is sent to a cell phone using global system mobile (GSM) Modem. MAX232 acts as a driver between microcontroller and modem.Keywords: LM35, heart beat sensor, ECG Sensor, BP Sensor, Zigbee module, GSM module, GPS module, PIC16F877A microcontroller
Procedia PDF Downloads 3823417 Acrylamide Induced Chronic Nephrotoxicity in Rats
Authors: Afshin Zahedi, Keivan Jmahidi
Abstract:
Acrylamide (AA) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of acrylamide (ACR) 50 adult male rats (Wistar, approximately 250 g) were randomly assigned in 4 groups; including 3 treatment groups and 1 control group named as A, B, C, and D respectively. Rats in treatment groups were exposed to 0.1, 1, and 10 mg/kg ACR per day×90 days p.o (gavage) respectively. The remaining 10 rats in control group received daily p.o (gavage) of 0.9% saline (3ml/kg). On day 91, two rats were randomly selected, perfused, dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did not show morphologic changes in kidneys of rats belong to groups A, B and D, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, and tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C. This finding, beside neurotoxic, reproductive and carcinogenic effects, indicates for the first time another important aspect of toxic effect of ACR, ie, chronic nephrotoxicity.Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats
Procedia PDF Downloads 5423416 Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)
Authors: Khiem M. Nguyen, Ming C. Yang
Abstract:
Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice.Keywords: Chl-deficient mutant, grana stacked, photosynthesis, RNA-Seq, transcriptomic analysis
Procedia PDF Downloads 1243415 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather
Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour
Abstract:
The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati TropicalKeywords: energyplus, multi-layer of PCM, phase changing materials, tropical area
Procedia PDF Downloads 953414 The Influence of Forest Management Histories on Dead and Habitat Trees in the Old Growth Forest in Northern Iran
Authors: Kiomars Sefidi
Abstract:
Dead and habitat tree such as fallen logs, snags, stumps and cracks and loos bark etc. is regarded as an important ecological component of forests on which many forest dwelling species depend, yet its relation to management history in Caspian forest has gone unreported. The aim of research was to compare the amounts of dead tree and habitat in the forests with historically different intensities of management, including: forests with the long term implication of management (PS), the short-term implication of management (NS) which were compared with semi virgin forest (GS). The number of 405 individual dead and habitat trees were recorded and measured at 109 sampling locations. ANOVA revealed volume of the dead tree in the form and decay classes significantly differ within sites and dead volume in the semi virgin forest significantly higher than managed sites. Comparing the amount of dead and habitat tree in three sites showed that dead tree volume related with management history and significantly differ in three study sites. Also, the numbers of habitat trees including cavities, Cracks and loose bark and Fork split trees significantly vary among sites. Reaching their highest in virgin site and their lowest in the site with the long term implication of management, it was concluded that forest management cause reduction of the amount of dead and habitat tree. Forest management history affect the forest's ability to generate dead tree especially in a large size, thus managing this forest according to ecological sustainable principles require a commitment to maintaining stand structure that allow, continued generation of dead tree in a full range of size.Keywords: forest biodiversity, cracks trees, fork split trees, sustainable management, Fagus orientalis, Iran
Procedia PDF Downloads 5553413 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors
Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs
Abstract:
Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors
Procedia PDF Downloads 1203412 Magnesium Nanoparticles for Photothermal Therapy
Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini
Abstract:
Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy
Procedia PDF Downloads 2703411 Red Blood Cells Deformability: A Chaotic Process
Authors: Ana M. Korol, Bibiana Riquelme, Osvaldo A. Rosso
Abstract:
Since erythrocyte deformability analysis is mostly qualitative, the development of quantitative nonlinear methods is crucial for restricting subjectivity in the study of cell behaviour. An electro-optic mechanic system called erythrodeformeter has been developed and constructed in our laboratory in order to evaluate the erythrocytes' viscoelasticity. A numerical method formulated on the basis of fractal approximation for ordinary (OBM) and fractionary Brownian motion (FBM), as well as wavelet transform analysis, are proposed to distinguish chaos from noise based on the assumption that diffractometric data involves both deterministic and stochastic components, so it could be modelled as a system of bounded correlated random walk. Here we report studies on 25 donors: 4 alpha thalassaemic patients, 11 beta thalassaemic patients, and 10 healthy controls non-alcoholic and non-smoker individuals. The Correlation Coefficient, a nonlinear parameter, showed evidence of the changes in the erythrocyte deformability; the Wavelet Entropy could quantify those differences which are detected by the light diffraction patterns. Such quantifiers allow a good deal of promise and the possibility of a better understanding of the rheological erythrocytes aspects and also could help in clinical diagnosis.Keywords: red blood cells, deformability, nonlinear dynamics, chaos theory, wavelet trannsform
Procedia PDF Downloads 593410 Effect of Oxidative Stress from Smoking on Erythrocyte Phosphatidylserine Externalization
Authors: Ratchaneewan Maneemaroj, Paveena Noisuwan, Chonlada Lakhonphon
Abstract:
The smoking is one of the major risk factors in Non-Communicable Disease. Free radicals from cigarette smoke can cause oxidative stress. The oxidative insults can lead to red blood cell (RBC) senescence and are involved in the clearance of red blood cells. The objective of the present study is to assess the association between smoke, oxidative stress evaluated with serum Malondialdehyde (MDA) level and phosphatidylserine (PS) externalization (biomarker of RBC senescence) evaluated with annexin V binding. A total of sixty-four male volunteers aged 25-60 years old were recruited in this study. MDA was measured by colorimetric method. Annexin V binding was detected by flow cytometry. Our results show that there was a significant increase in MDA levels in cigarette smokers as compared to non-smokers (p < 0.001). However, there was no significant different between annexin V binding (% gate) in cigarette smokers and non-smokers (p = 0.978). These results provide evidence of free radical from smoking is associated with oxidative damage to erythrocytes. However, our results suggest that PS externalization is unlikely to have a role in RBC senescence pathway of stressed erythrocytes from cigarette smoke. The other biomarker of RBC senescence should be determined on cigarette smoker erythrocytes.Keywords: malondialdehyde, phosphatidylserine, RBC senescence, annexin V
Procedia PDF Downloads 4373409 Goblet cells and Mucin Related Gene Expression in Mice Infected with Eimeria papillata
Authors: Mohamed A. Dkhil, Denis Delic, Saleh Al-Quraishy
Abstract:
Coccidiosis causes considerable economic loss in the poultry industry. The current study aimed to investigate the response of goblet cells as well as the induced tissue damage during Eimeria papilata infection. Mice were infected with sporulated E. papillata oocyts. On day 5 post-infection, the fecal output was determined. Also, the jejunum was prepared for the histological, histochemical and molecular studies. Our results revealed that the intestinal coccidian infection with E. papillata induced a marked goblet cell hypoplasia and depleted mucus secretion. Also, the infection was able to alter the jejuna architecture and increased the apoptotic cells inside the villi. In addition, the real time PCR results indicated that, the inflammatory cytokines TNF-α, iNOS, IFN-y and IL-1β were significantly up-regulated. In contrast, the mRNA expression patterns of IL-6 in response to E. papillata infection did not differ significantly between control and infected mice. Moreover, the mRNA expression of TLR4 was significantly up-regulated, whereas the expression of MUC2 is significantly down-regulated upon infection. Further studies are required to understand the regulatory mechanisms of goblet cells related genes.Keywords: goblet cells, Eimeria papillata, mice, jejunum
Procedia PDF Downloads 2753408 Carbon Coated Yarn Supercapacitors: Parametric Study of Performance Output
Authors: Imtiaz Ahmed Khan, Sabu John, Sania Waqar, Lijing Wang, Mac Fergusson, Ilija Najdovski
Abstract:
Evolution of textiles, from its orthodox to more interactive role has stirred the researchers to uncover its application in numerous arenas. The idea of using textile based materials for wearable energy harvesting and storage devices have gained immense popularity. This is mainly due to textile comfort and flexibility features. In this work, nano-carbonous materials were infused on cellulosic fibers using caustic soda treatment. This paper presents the complete procedure of yarn supercapacitors fabrication process through dip coating technique and its characterization method. The main objective is to study, the effect of varying caustic soda concentration on mass loading of activated carbon on yarns and the related capacitance output of the designed yarn supercapacitor. Polyvinyl alcohol and Phosphoric acid were used as electrolyte in a two-electrode cell assembly to measure device electrochemical performance. The results show a promising increase in capacitance value using this technique.Keywords: yarn supercapacitors, activated carbon, dip coating, caustic soda, electrolyte, electrochemical characterization
Procedia PDF Downloads 4633407 Phytochemical Analysis and in vitro Biological Activities of an Ethyl Acetate Extract from the Peel of Punica granatum L. var. Dente di Cavallo
Authors: Silvia Di Giacomo, Marcello Locatelli, Simone Carradori, Francesco Cacciagrano, Chiara Toniolo, Gabriela Mazzanti, Luisa Mannina, Stefania Cesa, Antonella Di Sotto
Abstract:
Hyperglycemia represents the main pathogenic factor in the development of diabetes complications and has been found associated with mitochondrial dysfunction and oxidative stress, which in turn increase cell dysfunction. Therefore, counteract oxidative species appears to be a suitable strategy for preventing the hyperglycemia-induce cell damage and support the pharmacotherapy of diabetes and metabolic diseases. Antidiabetic potential of many food sources has been linked to the presence of polyphenolic metabolites, particularly flavonoids such as quercetin and its glycosylated form rutin. In line with this evidence, in the present study, we assayed the potential anti-hyperglycemic activity of an ethyl acetate extract from the peel of Punica granatum L. var. Dente di Cavallo (PGE), a fruit well known to traditional medicine for the beneficial properties of its edible juice. The effect of the extract on the glucidic metabolism has been evaluated by assessing its ability to inhibit α-amylase and α-glucosidase, two digestive enzymes responsible for the hydrolysis of dietary carbohydrates: their inhibition can delay the carbohydrate digestion and reduce glucose absorption, thus representing an important strategy for the management of hyperglycemia. Also, the PGE ability to block the release of advanced glycated end-products (AGEs), whose accumulation is known to be responsible for diabetic vascular complications, was studied. The iron-reducing and chelating activities, which are the primary mechanisms by which AGE inhibitors stop their metal-catalyzed formation, were evaluated as possible antioxidant mechanisms. At last, the phenolic content of PGE was characterized by chromatographic and spectrophotometric methods. Our results displayed the ability of PGE to inhibit α-amylase enzyme with a similar potency to the positive control: the IC₅₀ values were 52.2 (CL 27.7 - 101.2) µg/ml and 35.6 (CL 22.8 - 55.5) µg/ml for acarbose and PGE, respectively. PGE also inhibited the α-glucosidase enzyme with about a 25 higher potency than the positive controls of acarbose and quercetin. Furthermore, the extract exhibited ferrous and ferric ion chelating ability, with a maximum effect of 82.1% and 80.6% at a concentration of 250 µg/ml respectively, and reducing properties, reaching the maximum effect of 80.5% at a concentration of 10 µg/ml. At last, PGE was found able to inhibit the AGE production (maximum inhibition of 82.2% at the concentration of 1000 µg/ml), although with lower potency with respect to the positive control rutin. The phytochemical analysis of PGE displayed the presence of high levels of total polyphenols, tannins, and flavonoids, among which ellagic acid, gallic acid and catechin were identified. Altogether these data highlight the ability of PGE to control the carbohydrate metabolism at different levels, both by inhibiting the metabolic enzymes and by affecting the AGE formation likely by chelating mechanisms. It is also noteworthy that peel from pomegranate, although being a waste of juice production, can be reviewed as a nutraceutical source. In conclusion, present results suggest the possible role of PGE as a remedy for preventing hyperglycemia complications and encourage further in vivo studies.Keywords: anti-hyperglycemic activity, antioxidant properties, nutraceuticals, polyphenols, pomegranate
Procedia PDF Downloads 1853406 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 1983405 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4053404 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material
Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode
Abstract:
The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure
Procedia PDF Downloads 1223403 Diagnostic Performance of Mean Platelet Volume in the Diagnosis of Acute Myocardial Infarction: A Meta-Analysis
Authors: Kathrina Aseanne Acapulco-Gomez, Shayne Julieane Morales, Tzar Francis Verame
Abstract:
Mean platelet volume (MPV) is the most accurate measure of the size of platelets and is routinely measured by most automated hematological analyzers. Several studies have shown associations between MPV and cardiovascular risks and outcomes. Although its measurement may provide useful data, MPV remains to be a diagnostic tool that is yet to be included in routine clinical decision making. The aim of this systematic review and meta-analysis is to determine summary estimates of the diagnostic accuracy of mean platelet volume for the diagnosis of myocardial infarction among adult patients with angina and/or its equivalents in terms of sensitivity, specificity, diagnostic odds ratio, and likelihood ratios, and to determine the difference of the mean MPV values between those with MI and those in the non-MI controls. The primary search was done through search in electronic databases PubMed, Cochrane Review CENTRAL, HERDIN (Health Research and Development Information Network), Google Scholar, Philippine Journal of Pathology, and Philippine College of Physicians Philippine Journal of Internal Medicine. The reference list of original reports was also searched. Cross-sectional, cohort, and case-control articles studying the diagnostic performance of mean platelet volume in the diagnosis of acute myocardial infarction in adult patients were included in the study. Studies were included if: (1) CBC was taken upon presentation to the ER or upon admission (within 24 hours of symptom onset); (2) myocardial infarction was diagnosed with serum markers, ECG, or according to accepted guidelines by the Cardiology societies (American Heart Association (AHA), American College of Cardiology (ACC), European Society of Cardiology (ESC); and, (3) if outcomes were measured as significant difference AND/OR sensitivity and specificity. The authors independently screened for inclusion of all the identified potential studies as a result of the search. Eligible studies were appraised using well-defined criteria. Any disagreement between the reviewers was resolved through discussion and consensus. The overall mean MPV value of those with MI (9.702 fl; 95% CI 9.07 – 10.33) was higher than in those of the non-MI control group (8.85 fl; 95% CI 8.23 – 9.46). Interpretation of the calculated t-value of 2.0827 showed that there was a significant difference in the mean MPV values of those with MI and those of the non-MI controls. The summary sensitivity (Se) and specificity (Sp) for MPV were 0.66 (95% CI; 0.59 - 0.73) and 0.60 (95% CI; 0.43 – 0.75), respectively. The pooled diagnostic odds ratio (DOR) was 2.92 (95% CI; 1.90 – 4.50). The positive likelihood ratio of MPV in the diagnosis of myocardial infarction was 1.65 (95% CI; 1.20 – 22.27), and the negative likelihood ratio was 0.56 (95% CI; 0.50 – 0.64). The intended role for MPV in the diagnostic pathway of myocardial infarction would perhaps be best as a triage tool. With a DOR of 2.92, MPV values can discriminate between those who have MI and those without. For a patient with angina presenting with elevated MPV values, it is 1.65 times more likely that he has MI. Thus, it is implied that the decision to treat a patient with angina or its equivalents as a case of MI could be supported by an elevated MPV value.Keywords: mean platelet volume, MPV, myocardial infarction, angina, chest pain
Procedia PDF Downloads 873402 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink
Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang
Abstract:
In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN
Procedia PDF Downloads 5413401 Alternative Hypotheses on the Role of Oligodendrocytes in Neurocysticercosis: Comprehensive Review
Authors: Humberto Foyaca Sibat, Lourdes de Fátima Ibañez Valdés
Abstract:
Background Cysticercosis (Ct) is a preventable and eradicable zoonotic parasitic disease secondary to a cestode infection by the larva form of pig tapeworm Taenia solium (Ts), mainly seen in people living in developing countries. When the cysticercus is in the brain parenchymal, intraventricular system, subarachnoid space (SAS), cerebellum, brainstem, optic nerve, or spinal cord, then it has named neurocysticercosis (NCC), and the often-clinical manifestations are headache and epileptic seizures/epilepsy among other less frequent symptoms and signs. In this study, we look for a manuscript related to the role played by oligodendrocytes in the pathogenesis of NCC. We review this issue and formulate some hypotheses regarding its role and the role played in the pathogenesis of calcified NCC and epileptic seizures, and secondary epilepsy. Method: We searched the medical literature comprehensively, looking for published medical subject heading (MeSH) terms like "neurocysticercosis", "pathogenesis of neurocysticercosis", "comorbidity in NCC"; OR "oligodendrocytes"; OR "oligodendrocyte precursor cells(OPC/NG2)"; OR "epileptic seizures(ES)/Epilepsy(Ep)/NCC" OR "oligodendrocytes(OLG)/ES/Ep”; OR "calcified NCC/OLG"; OR “OLG Ca2+.” Results: All selected manuscripts were peer-reviewed, and we did not find publications related to OLG/NCC.Keywords: oligodendrocytes, neurocysticercosis, oligodendrocytes, oligodendrocyte precursor cell, KG2, calcified neurocysticercosis, cellular calcium influx.
Procedia PDF Downloads 753400 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis
Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu
Abstract:
Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide
Procedia PDF Downloads 2403399 CFD Study of Free Surface Flows Resulting from a Dam-Breaking
Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec
Abstract:
Free surface flows caused by dam breaks in channels or rivers is an attention-getting subject to the engineering practice, however, the studies are few to be reported. In this paper, a numerical investigation of unsteady free surface flows resulting from a dam-breaking in a rectangular channel is studied. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of fluid method (VOF). Verification for a typical dam-break problem is analyzed by comparing the present results with others and very good agreement is obtained. The present approach is then used to predict the characteristics of free surface flow due to the dam breaking in channel. The characteristics of complex unsteady free surface flow in these examples are clearly explained. The numerical results show that the flow became more disturbed after impacting the vertical wall, then a recirculation zone, as well as turbulence phenomena, were created. At this instant, a cavity of air was included on the flow. The results agree well with the experimental data found in the literature.Keywords: CFD, dam-break, free surface, turbulent flows, VOF
Procedia PDF Downloads 3083398 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling
Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie
Abstract:
Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling
Procedia PDF Downloads 913397 Health Promoting Properties of Phytochemicals from Rosemary (Rosmarinus officinalis) for Cancer and Inflammatory Bowel Disease
Authors: Jeremy J. Johnson
Abstract:
Mediterranean herbs including rosemary (Rosmarinus officinalis) contain a variety of phytochemicals including diterpenes that possess extensive biological activity. Applications of diterpenes, including the more abundant forms carnosol and carnosic acid, have been shown to possess anti-cancer, anti-inflammatory, anti-oxidant, and anti-proliferation properties. To confirm these properties, we have evaluated rosemary extract and selected diterpenes for biological activity in cancer and inflammatory models. Our preliminary data have revealed that select diterpenes can disrupt androgen receptor functionality in prostate and breast cancer cells. This property is unique among natural products for hormone-responsive cancers. The second area of interest has been evaluating rosemary extract and selected diterpenes for activation of sestrin-2, an antioxidant protein, in colon cancer cells. A combination of in vitro and in vivo approaches have been utilized to characterize the activity of rosemary diterpenes in rosemary. Taken together, these results suggest that phytochemicals found in rosemary have distinct pharmacological actions for disrupting cell-signaling pathways in cancer and inflammatory bowel disease.Keywords: rosemary, diterpene, cancer, inflammation
Procedia PDF Downloads 1463396 SnSₓ, Cu₂ZnSnS₄ Nanostructured Thin Layers for Thin-Film Solar Cells
Authors: Elena A. Outkina, Marina V. Meledina, Aliaksandr A. Khodin
Abstract:
Nanostructured thin films of SnSₓ, Cu₂ZnSnS₄ (CZTS) semiconductors were fabricated by chemical processing to produce thin-film photoactive layers for photocells as a prospective lowest-cost and environment-friendly alternative to Si, Cu(In, Ga)Se₂, and other traditional solar cells materials. To produce SnSₓ layers, the modified successive ionic layer adsorption and reaction (SILAR) technique were investigated, including successive cyclic dipping into Na₂S solution and SnCl₂, NaCl, triethanolamine solution. To fabricate CZTS layers, the cyclic dipping into CuSO₄ with ZnSO₄, SnCl₂, and Na₂S solutions was used with intermediate rinsing in distilled water. The nano-template aluminum/alumina substrate was used to control deposition processes. Micromorphology and optical characteristics of the fabricated layers have been investigated. Analysis of 2D-like layers deposition features using nano-template substrate is presented, including the effect of nanotips in a template on surface charge redistribution and transport.Keywords: kesterite, nanotemplate, SILAR, solar cell, tin sulphide
Procedia PDF Downloads 1423395 Investigation of the Controversial Immunomodulatory Potential of Trichinella spiralis Excretory-Secretory Products versus Extracellular Vesicles Derived from These Products in vitro
Authors: Natasa Ilic, Alisa Gruden-Movsesijan, Maja Kosanovic, Sofija Glamoclija, Marina Bekic, Ljiljana Sofronic-Milosavljevic, Sergej Tomic
Abstract:
As a very promising candidate for modulation of immune response in the sense of biasing the inflammatory towards an anti-inflammatory type of response, Trichinella spiralis infection was shown to successfully alleviate the severity of experimental autoimmune encephalomyelitis, the animal model of human disease multiple sclerosis. This effect is achieved via its excretory-secretory muscle larvae (ES L1) products which affect the maturation status and function of dendritic cells (DCs) by inducing the tolerogenic status of DCs, which leads to the mitigation of the Th1 type of response and the activation of a regulatory type of immune response both in vitro and in vivo. ES L1 alone or via treated DCs successfully mitigated EAE in the same manner as the infection itself. On the other hand, it has been shown that T. spiralis infection slows down the tumour growth and significantly reduces the tumour size in the model of mouse melanoma, while ES L1 possesses a pro-apoptotic and anti-survival effect on melanoma cells in vitro. Hence, although the mechanisms still need to be revealed, T. spiralis infection and its ES L1 products have a bit of controversial potential to modulate both inflammatory diseases and malignancies. The recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that the induction of complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. This study aimed to explore whether TsEVs bare the similar potential as ES L1 to influence the status of DCs in initiation, progression and regulation of immune response, but also to investigate the effect of both ES L1 and TsEVs on myeloid derived suppressor cells (MDSC) which present the regular tumour tissue environment. TsEVs were enriched from the conditioned medium of T. spiralis muscle larvae by differential centrifugation and used for the treatment of human monocyte-derived DCs and MDSC. On DCs, TsEVs induced low expression of HLA DR and CD40, moderate CD83 and CD86, and increased expression of ILT3 and CCR7 on treated DCs, i.e., they induced tolerogenic DCs. Such DCs possess the capacity to polarize T cell immune response towards regulatory type, with an increased proportion of IL-10 and TGF-β producing cells, similarly to ES L1. These findings indicated that the ability of TsEVs to induce tolerogenic DCs favoring anti-inflammatory responses may be helpful in coping with diseases that involve Th1/Th17-, but also Th2-mediated inflammation. In MDSC in vitro model, although both ES L1 and TsEVs had the same impact on MDSC phenotype i.e., they acted suppressive, ES L1 treated MDSC, unlike TsEVs treated ones, induced T cell response characterized by the increased RoRγT and IFN-γ, while the proportion of regulatory cells was decreased followed by the decrease in IL-10 and TGF-β positive cells proportion within this population. These findings indicate the interesting ability of ES L1 to modulate T cells response via MDSC towards pro-inflamatory type, suggesting that, unlike TsEVs which consistently demonstrate the suppresive effect on inflammatory response, it could be used also for the development of new approaches aimed for the treatment of malignant diseases. Acknowledgment: This work was funded by the Promis project – Nano-MDCS-Thera, Science Fund, Republic of Serbia.Keywords: dendritic cells, myeloid derived suppressor cells, immunomodulation, Trichinella spiralis
Procedia PDF Downloads 2043394 The “Buffer Layer” An Improved Electrode-Electrolyte Interface For Solid-State Batteries
Authors: Gregory Schmidt
Abstract:
Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they should offer safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode–electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and ensures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes containing solid ionic conductors in their structure, but this approach will require the conductors to exhibit chemical stability, electrochemical stability, flexibility, and adhesion and is, therefore, limited to some materials. Recently, Arkema developed a technology called buffering layer which allows the transformation of any conventional porous electrode into a catholyte. This organic layer has a very high ionic conductivity at room temperature, is compatible with all active materials, and can be processed with conventional Gigafactory equipment. Moreover, this layer helps protect the solid ionic conductor from the cathode and anode materials. During this presentation, the manufacture and the electrochemical performance of this layer for different systems of cathode and anode will be discussed.Keywords: electrochemistry, all solid state battery, materials, interface
Procedia PDF Downloads 973393 Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China
Authors: Tao Zhao, Xianshuo Xu
Abstract:
Low-carbon public passenger transport is an important part of low carbon city. The CO2 emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO2 counting method, which shows that the total CO2 emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO2 emissions of the buses, taxies, and rail transits are calculated respectively. A CO2 emission of 829.9 thousand tons makes taxies become the largest CO2 emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO2 emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO2 emissions, as well as the CO2 emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO2 emissions proportion of 36.01%, with the minimum number of CO2 emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO2 emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles.Keywords: public passenger transport, carbon emissions, countermeasures, China
Procedia PDF Downloads 4293392 Fluoride-Induced Stress and Its Association with Bone Developmental Pathway in Osteosarcoma Cells
Authors: Deepa Gandhi, Pravin K. Naoghare, Amit Bafana, Krishnamurthi Kannan, Saravanadevi Sivanesana
Abstract:
Oxidative stress is known to depreciate normal functioning of osteoblast cells. Present study reports oxidative/inflammatory signatures in fluoride exposed human osteosarcoma (HOS) cells and its possible association with the genes involved in bone developmental pathway. Microarray analysis was performed to understand the possible molecular mechanisms of stress-mediated bone lose in HOS cells. Cells were chronically exposed with sub-lethal concentration of fluoride. Global gene expression is profiling revealed 34 up regulated and 2598 down-regulated genes, which were associated with several biological processes including bone development, osteoblast differentiation, stress response, inflammatory response, apoptosis, regulation of cell proliferation. Microarray data were further validated through qRT-PCR and western blot analyses using key representative genes. Based on these findings, it can be proposed that chronic exposure of fluoride may impair bone development via oxidative and inflammatory stress. The present finding also provides important biological clues, which will be helpful for the development of therapeutic targets against diseases related bone.Keywords: bone, HOS cells, microarray, stress
Procedia PDF Downloads 3773391 Risk Assessment of Particulate Matter (PM10) in Makkah, Saudi Arabia
Authors: Turki M. Habeebullah, Atef M. F. Mohammed, Essam A. Morsy
Abstract:
In recent decades, particulate matter (PM10) have received much attention due to its potential adverse health impact and the subsequent need to better control or regulate these pollutants. The aim of this paper is focused on study risk assessment of PM10 in four different districts (Shebikah, Masfalah, Aziziyah, Awali) in Makkah, Saudi Arabia during the period from 1 Ramadan 1434 AH - 27 Safar 1435 AH. samples was collected by using Low Volume Sampler (LVS Low Volume Sampler) device and filtration method for estimating the total concentration of PM10. The study indicated that the mean PM10 concentrations were 254.6 (186.1 - 343.2) µg/m3 in Shebikah, 184.9 (145.6 - 271.4) µg/m3 in Masfalah, 162.4 (92.4 - 253.8) µg/m3 in Aziziyah, and 56.0 (44.5 - 119.8) µg/m3 in Awali. These values did not exceed the permissible limits in PME (340 µg/m3 as daily average). Furthermore, health assessment is carried out using AirQ2.2.3 model to estimate the number of hospital admissions due to respiratory diseases. The cumulative number of cases per 100,000 were 1534 (18-3050 case), which lower than that recorded in the United States, Malaysia. The concentration response coefficient was 0.49 (95% CI 0.05 - 0.70) per 10 μg/m3 increase of PM10.Keywords: air pollution, respiratory diseases, airQ2.2.3, Makkah
Procedia PDF Downloads 4533390 Small Molecule Inhibitors of PD1-PDL1 Interaction
Authors: K. Żak, S. Przetocka, R. Kitel, K. Guzik, B. Musielak, S. Malicki, G. Dubin, T. A. Holak
Abstract:
Studies on tumor genesis revealed a number of factors that may potentially serve as molecular targets for immunotherapies. One of such promising targets are PD1 and PDL1 proteins. PD1 (Programmed cell death protein 1) is expressed by activated T cells and plays a critical role in modulation of the host's immune response. One of the PD1 ligands -PDL1- is expressed by macrophages, monocytes and cancer cells which exploit it to avoid immune attack. The notion of the mechanisms used by cancer cells to block the immune system response was utilized in the development of therapies blocking PD1-PDL1 interaction. Up to date, human PD1-PDL1 complex has not been crystallized and structure of the mouse-human complex does not provide a complete view of the molecular basis of PD1-PDL1 interactions. The purpose of this study is to obtain crystal structure of the human PD1-PDL1 complex which shall allow rational design of small molecule inhibitors of the interaction. In addition, the study presents results of binding small-molecules to PD1 and fragment docking towards PD1 protein which will facilitate the design and development of small–molecule inhibitors of PD1-PDL1 interaction.Keywords: PD1, PDL1, cancer, small molecule, drug discovery
Procedia PDF Downloads 394