Search results for: human behaviors of learning and cooperation
13849 Blended Intensive Programmes: A Way Forward to Promote Internationalization in Higher Education
Authors: Sonja Gögele, Petra Kletzenbauer
Abstract:
International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff and student mobility, and blended international projects). The latest innovative approach in terms of Erasmus+ are so called Blended Intensive Programmes (BIP) which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of internationalization and Englishization. In this context, key roles are assigned to the development of future transnational and transdisciplinary curricula by considering innovative aspects for learning and teaching (i.e. virtual collaboration, research-based learning).Keywords: internationalization, englishization, short-term mobility, international teaching and learning
Procedia PDF Downloads 12013848 Exploring the Formation of High School Students’ Science Identity: A Qualitative Study
Authors: Sitong. Chen, Bing Wei
Abstract:
As a sociocultural concept, identity has increasingly gained attention in educational research, and the notion of students’ science identity has been widely discussed in the field of science education. Science identity was proved to be a key indicator of students’ learning engagement, persistence, and career intentions in science-related and STEM fields. Thus, a great deal of educational effort has been made to promote students’ science identity in former studies. However, most of this research was focused on students’ identity development during undergraduate and graduate periods, except for a few studies exploring high school students’ identity formation. High school has been argued as a crucial period for promoting science identity. This study applied a qualitative method to explore how high school students have come to form their science identities in previous learning and living experiences. Semi-structured interviews were conducted with 8 newly enrolled undergraduate students majoring in science-related fields. As suggested by the narrative data from interviews, students’ formation of science identities was driven by their five interrelated experiences: growing self-recognition as a science person, achieving success in learning science, getting recognized by influential others, being interested in science subjects, and informal science experiences in various contexts. Specifically, students’ success and achievement in science learning could facilitate their interest in science subjects and others’ recognition. And their informal experiences could enhance their interest and performance in formal science learning. Furthermore, students’ success and interest in science, as well as recognition from others together, contribute to their self-recognition. Based on the results of this study, some practical implications were provided for science teachers and researchers in enhancing high school students’ science identities.Keywords: high school students, identity formation, learning experiences, living experiences, science identity
Procedia PDF Downloads 5813847 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 15913846 Thinking Differently about Diversity: A Literature Review
Authors: Natalie Rinfret, Francine Tougas, Ann Beaton
Abstract:
Conventions No. 100 and 111 of the International Labor Organization, passed in 1951 and 1958 respectively, established the principles of equal pay for men and women for work of equal value and freedom from discrimination in employment. Governments of different countries followed suit. For example, in 1964, the Civil Rights Act was passed in the United States and in 1972, Canada ratified Convention 100. Thus, laws were enacted and programs were implemented to combat discrimination in the workplace and, over time, more than 90% of the member countries of the International Labour Organization have ratified these conventions by implementing programs such as employment equity in Canada aimed at groups recognized as being discriminated against in the labor market, including women. Although legislation has been in place for several decades, employment discrimination has not gone away. In this study, we pay particular attention to the hidden side of the effects of employment discrimination. This is the emergence of subtle forms of discrimination that often fly under the radar but nevertheless, have adverse effects on the attitudes and behaviors of members of targeted groups. Researchers have identified two forms of racial and gender bias. On the one hand, there are traditional prejudices referring to beliefs about the inferiority and innate differences of women and racial minorities compared to White men. They have the effect of confining these two groups to job categories suited to their perceived limited abilities and can result in degrading, if not violent and hateful, language and actions. On the other hand, more subtle prejudices are more suited to current social norms. However, this subtlety harbors a conflict between values of equality and remnants of negative beliefs and feelings toward women and racial minorities. Our literature review also takes into account an overlooked part of the groups targeted by the programs in place, senior workers, and highlights the quantifiable and observable effects of prejudice and discriminatory behaviors in employment. The study proposes a hybrid model of interventions, taking into account the organizational system (employment equity practices), discriminatory attitudes and behaviors, and the type of leadership to be advocated. This hybrid model includes, in the first instance, the implementation of initiatives aimed at both promoting employment equity and combating discrimination and, in the second instance, the establishment of practices that foster inclusion, the full and complete participation of all, including seniors, in the mission of their organization.Keywords: employment discrimination, gender bias, the hybrid model of interventions, senior workers
Procedia PDF Downloads 22013845 Developing Creative and Critically Reflective Digital Learning Communities
Authors: W. S. Barber, S. L. King
Abstract:
This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.Keywords: online, pedagogy, learning, communities
Procedia PDF Downloads 40513844 Internal Assessment of Satisfaction with the Quality of the Learning Process
Authors: Bulatbayeva A. A., Maxutova I. O., Ergalieva A. N.
Abstract:
This article presents a study of the practice of self-assessment of the quality of training cadets in a military higher specialized educational institution. The research was carried out by means of a questionnaire survey aimed at identifying the degree of satisfaction of cadets with the organization of the educational process, quality of teaching, the quality of the organization of independent work, and the system of their assessment. In general, the results of the study are of an intermediate nature. Proven tools will be incorporated into the planning and effective management of the learning process. The results of the study can be useful for the administrators and managers of the military education system for teachers of military higher educational institutions for adjusting the content and technologies of training future specialists. The publication was prepared as part of applied grant research for 2020-2022 by order of the Ministry of Education and Science of the Republic of Kazakhstan on the topic "Development of a comprehensive methodology for assessing the quality of education of graduates of military special educational institutions."Keywords: teaching quality, quality satisfaction, learning management, quality management, process approach, classroom learning, interactive technologies, teaching quality
Procedia PDF Downloads 12713843 Learning Aid for Kids in India
Authors: Prabir Mukhopadhyay, Atul Kohale
Abstract:
Going to school for Indian kids is a panic situation. Many of them are unable to adjust themselves to the confinement of the school building and this problem is compounded by other factors like unknown people in the vicinity, absence of either parents etc. This project aims at addressing these issues by exposing the kids at home to the learning environment. The purpose is to design a physical model with interfaces at each surface. The model would be like a cube with interactive surfaces where the child would be able to draw, paint, complete a picture and do such fun activities.Keywords: interface, kids, play, computer systems engineering
Procedia PDF Downloads 21313842 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 7713841 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 15813840 Links Between Maternal Trauma, Response to Distress, and Toddler Internalizing and Externalizing Behaviors: A Mediational Analysis
Authors: Zena Ebrahim, Susan Woodhouse
Abstract:
Previous research shows that mothers’ experiences of trauma are linked to their child’s later socioemotional functioning. However, the mechanisms involved are not well understood. One potential mediator is maternal insensitive responses to child distress. This study examined the link between maternal trauma, mothers’ responses to toddler distress, and toddlers’ socioemotional outcomes among a socioeconomically diverse sample of 110 mothers and their 12- to 35-month-old toddlers. It was hypothesized that a mother’s difficulty in responding sensitively to her child’s distress would mediate the relations between maternal trauma and child internalizing and externalizing behaviors. Two mediational models were tested to examine non-supportive responses to distress as a potential mediator of the relation between maternal trauma and toddler mental health outcomes; one model focused on predicting child internalizing symptoms and the other focused on predicting child externalizing symptoms. Measures included assessment of maternal trauma (Life Stressor Checklist-Revised), mothers’ responses to child distress (Coping with Toddlers’ Negative Emotions Scale), and toddler socioemotional functioning (Infant-Toddler Social and Emotional Assessment). Results revealed that the relations between maternal trauma and toddler symptoms (internalizing and externalizing symptoms) were mediated by maternal non-supportive response to child distress for both internalizing and externalizing domains of child mental health. Findings suggest the importance of early intervention for trauma-exposed mothers and target areas for parenting interventions.Keywords: trauma, parenting, child mental health, transgenerational effects of trauma
Procedia PDF Downloads 15613839 Examining Efficacy of the Islamic Cooperatives Society as a ShariᶜAh Based Economic Outfit: A Case Study of Kwasu Al-Halal Cooperative Society, Malete, Nigeria
Authors: Abdus-Samiᶜi Imam Arikewuyo
Abstract:
Islam enjoins the spirit of cooperation among fellow mankind. This is particularly entrenched in the brotherhood phenomenon advocated by Islam. With cooperation, a group of people with diverse qualities and opportunities can facilitate a breakthrough in what is seemingly difficult, if not impossible. This understanding underscores the initiative of establishing multi-purpose cooperative societies for thrifts and savings among bonafide members, especially in developing nations. The spirit and objectives of the Multi-Purpose Cooperatives Societies gave birth to the founding of several of these organizations as a plausible economic outfit in Nigeria to provide succor to the socio-economic predicaments of members. Pertinently, many Islamic cooperative societies sprang up, carving a niche for themselves as Shariᶜah-based economic outfits to accommodate the yearnings of the Muslim populace. KWASU Al-Halal Cooperative Society, Malete, Nigeria, is one such organization that is not only Shariᶜah inclined but also institutional-based. This paper, therefore, aims to examine the operations and activities of this society with a view to determining its strength as a Shariᶜah-based economic outfit for the survival of its clients in a competitive multi-religious atmosphere. The study is both historical and descriptive; thus, it employed interview, observation, focus group discussion and hermeneutical methods as pertinent research tools. The research findings indicated that adopting the Shariᶜah prescriptions, KWASU Al-Halal Cooperative Society, as a representation of the Islamic cooperatives society, fulfilled the essence and goal of its establishment, serving as an outlet for meeting the socio-economic demands of its members regardless of religious inclinations. The paper recommended that stronger efforts should be made on proper record keeping, the conscientiousness of beneficiaries on loan refunds or payments on purchases and education of the loanees and guarantors.Keywords: efficacy, Islamic cooperatives society, Kwasu al-halal cooperative society, shariᶜah
Procedia PDF Downloads 5813838 Embryonic Aneuploidy – Morphokinetic Behaviors as a Potential Diagnostic Biomarker
Authors: Banafsheh Nikmehr, Mohsen Bahrami, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Mallory Pitts, Tolga B. Mesen, Tamer M. Yalcinkaya
Abstract:
The number of people who receive in vitro fertilization (IVF) treatment has increased on a startling trajectory over the past two decades. Despite advances in this field, particularly the introduction of intracytoplasmic sperm injection (ICSI) and the preimplantation genetic screening (PGS), the IVF success remains low. A major factor contributing to IVF failure is embryonic aneuploidy (abnormal chromosome content), which often results in miscarriage and birth defects. Although PGS is often used as the standard diagnostic tool to identify aneuploid embryos, it is an invasive approach that could affect the embryo development, and yet inaccessible to many patients due its high costs. As such, there is a clear need for a non-invasive cost-effective approach to identify euploid embryos for single embryo transfer (SET). The reported differences between morphokinetic behaviors of aneuploid and euploid embryos has shown promise to address this need. However, current literature is inconclusive and further research is urgently needed to translate current findings into clinical diagnostics. In this ongoing study, we found significant differences between morphokinetic behaviors of euploid and aneuploid embryos that provides important insights and reaffirms the promise of such behaviors for developing non-invasive methodologies. Methodology—A total of 242 embryos (euploid: 149, aneuploid: 93) from 74 patients who underwent IVF treatment in Carolinas Fertility Clinics in Winston-Salem, NC, were analyzed. All embryos were incubated in an EmbryoScope incubator. The patients were randomly selected from January 2019 to June 2021 with most patients having both euploid and aneuploid embryos. All embryos reached the blastocyst stage and had known PGS outcomes. The ploidy assessment was done by a third-party testing laboratory on day 5-7 embryo biopsies. The morphokinetic variables of each embryo were measured by the EmbryoViewer software (Uniesense FertiliTech) on time-lapse images using 7 focal depths. We compared the time to: pronuclei fading (tPNf), division to 2,3,…,9 cells (t2, t3,…,t9), start of embryo compaction (tSC), Morula formation (tM), start of blastocyst formation (tSC), blastocyst formation (tB), and blastocyst expansion (tEB), as well as intervals between them (e.g., c23 = t3 – t2). We used a mixed regression method for our statistical analyses to account for the correlation between multiple embryos per patient. Major Findings— The average age of the patients was 35.04 yrs. The average patient age associated with euploid and aneuploid embryos was not different (P = 0.6454). We found a significant difference in c45 = t5-t4 (P = 0.0298). Our results indicated this interval on average lasts significantly longer for aneuploid embryos - c45(aneuploid) = 11.93hr vs c45(euploid) = 7.97hr. In a separate analysis limited to embryos from the same patients (patients = 47, total embryos=200, euploid=112, aneuploid=88), we obtained the same results (P = 0.0316). The statistical power for this analysis exceeded 87%. No other variable was different between the two groups. Conclusion— Our results demonstrate the importance of morphokinetic variables as potential biomarkers that could aid in non-invasively characterizing euploid and aneuploid embryos. We seek to study a larger population of embryos and incorporate the embryo quality in future studies.Keywords: IVF, embryo, euploidy, aneuploidy, morphokinteic
Procedia PDF Downloads 8813837 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 12313836 “Fake It Till You Make It”: A Qualitative Study into the Well-being of Autistic Women
Authors: Kathleen Seers, Rachel Hogg
Abstract:
Diagnosis of Autism Spectrum Disorder (ASD) in women is increasing, prompting research into the presentation of female ASD and exploring why females are failing to meet the diagnostic threshold. One explanation is the use of masking behaviors, where traits of ASD are suppressed and gender-appropriate behaviors are mimicked to reduce the visibility and victimization of ASD girls. Current research explores ASD presentation and the lived experiences of ASD girls and adolescents; however, there is a paucity of literature in relation to the intra- and inter- psychic experiences of ASD women. Through a social constructionist framework, this qualitative study sought to understand how the construction of gender and the medicalisation of ASD influences women’s experiences of ASD. This study also explored the use and consequence of masking strategies and the impact this has on well-being. Eight women were interviewed, and three major themes were identified. The themes outline the influence of gender expectations and social norms on the women’s experiences, the significance of diagnosis to their identity, and the influence of the medicalization of ASD. Participants shared experiences of feeling different and internalizing blame for this difference. The feeling of difference was a major contributor to the women’s positive or negative mental well-being. The process of diagnosis allowed participants to create and confirm their identity. Diagnosis also led to improvements in well-being, however, the findings also explore the complexity of labeling individuals with a disorder and the difficulties that arise from the construct of ‘functionality’ for those with Autism. The study also explores the temporal nature of ASD and the changing experiences of women as they mature. It is hoped this study promotes discussion and provides clinicians and those connected to ASD women with insights into the support ASD women require to live authentic lives.Keywords: female autism, gender, masking, social constructionism
Procedia PDF Downloads 12113835 Effective Strategies for Teaching English Language to Beginners in Primary Schools in Nigeria
Authors: Halima Musa Kamilu
Abstract:
This paper discusses the effective strategies for teaching English language to learners in primary schools in Nigeria. English language development is the systematic use of instructional strategies designed to promote the acquisition of English by pupils in primary schools whose primary language is not English. Learning a second language is through total immersion. These strategies support this learning method, allowing pupils to have the knowledge of English language in a pattern similar to the way they learned their native language through regular interaction with others who already know the language. The focus is on fluency and learning to speak English in a social context with native speakers. The strategies allow for effective acquisition. The paper also looked into the following areas: visuals that reinforce spoken or written words, employ gestures for added emphasis, adjusting of speech, stressing of high-frequency vocabulary words, use of fewer idioms and clarifying the meaning of words or phrases in context, stressing of participatory learning and maintaining a low anxiety level and boosting of enthusiasm. It recommended that the teacher include vocabulary words that will make the content more comprehensible to the learner.Keywords: effective, strategies, teaching, beginners and primary schools
Procedia PDF Downloads 49413834 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction
Procedia PDF Downloads 29013833 Speech Motor Processing and Animal Sound Communication
Authors: Ana Cleide Vieira Gomes Guimbal de Aquino
Abstract:
Sound communication is present in most vertebrates, from fish, mainly in species that live in murky waters, to some species of reptiles, anuran amphibians, birds, and mammals, including primates. There are, in fact, relevant similarities between human language and animal sound communication, and among these similarities are the vocalizations called calls. The first specific call in human babies is crying, which has a characteristic prosodic contour and is motivated most of the time by the need for food and by affecting the puppy-caregiver interaction, with a view to communicating the necessities and food requests and guaranteeing the survival of the species. The present work aims to articulate speech processing in the motor context with aspects of the project entitled emotional states and vocalization: a comparative study of the prosodic contours of crying in human and non-human animals. First, concepts of speech motor processing and general aspects of speech evolution will be presented to relate these two approaches to animal sound communication.Keywords: speech motor processing, animal communication, animal behaviour, language acquisition
Procedia PDF Downloads 8913832 Social Networks Global Impact on Protest Movements and Human Rights Activism
Authors: Marcya Burden, Savonna Greer
Abstract:
In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.Keywords: activism, protests, human rights, networks
Procedia PDF Downloads 9513831 Anatomical Survey for Text Pattern Detection
Abstract:
The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction
Procedia PDF Downloads 44413830 Policy and Practice of Later-Life Learning in China: A Critical Document Discourse Analysis
Authors: Xue Wu
Abstract:
Since the 1980s, a series of policies and practices have been implemented in China in response to the unprecedented rate of ageing population. The paper provides a detailed narrative of what later-life learning policy discourses have been advocated and gives a description on relevant practical issues during the past three decades. The research process based on the discourse approach with a systematic review of the government-issued documents. It finds that the main practices taken by central government at various levels were making University of the Aged (UA) available in all urban and rural regions to consolidate the newly student enrollments; focusing social-recreational, leisure and cultural activities on 55-75 age group; and utilizing various methods including voluntary works and tourism to improve older adults’ physical and mental wellness. Although there were greater achievements with 30 years of development, many problems still exist. Finding reveals that the curriculum should be modified to meet the needs of the local development, to promote older adults’ contact and contribution to the community, and to enhance technical competences of those in rural areas involving in agricultural production. Central government should also integrate resources from all sectors of the society for further developing later-life learning in China. The result of this paper highlights the value to promote community-based later-life learning for building a society for active ageing and ageing in place.Keywords: ageing population, China, later-life learning, policy, University of the Aged
Procedia PDF Downloads 14413829 Beyond Typical Textbooks: Adapting Authentic Materials for Engaged Learning in the ELT Classroom
Authors: Fatemeh Miraki
Abstract:
The use of authentic materials in English Language Teaching (ELT) has become increasingly prominent as educators recognize the value of exposing learners to real-world language use and cultural contexts. The integration of authentic materials in ELT aligns with the understanding that language learning is most effective when situated within authentic contexts (Richards & Rodgers, 2001). Tomlinson (1998) highlights the significance of authentic materials in ELT by research indicating that they offer learners exposure to genuine language use and cultural contexts. Tomlinson's work emphasizes the importance of creating meaningful learning experiences through the use of authentic materials. Research by Dörnyei (2001) underscores the potential of authentic materials to enhance students' intrinsic motivation through their relevance to real-life language use. The goal of this review paper is to explore the use of authentic materials in English Language Teaching (ELT) and its impact on language learning. It also discusses best practices for selecting and integrating such authentic materials into ELT curriculum, highlighting the benefits and challenges of using authentic materials to enhance student engagement, motivation, and language proficiency. Drawing on current research and practical examples, this paper provides insights into how teachers can effectively navigate the world of authentic materials to create dynamic and meaningful learning experiences for 21st century ELT learners. The findings of this study advocates for a shift towards embracing authentic materials within the ELT classroom, acknowledging their profound impact on language proficiency, intercultural competence, and learner engagement. It showed the transformative potential of authentic materials, educators can undergo a vibrant and immersive language learning experience, enriched with real-world application and cultural authenticity.Keywords: authentic materials, ELT Classroom, ELT curriculum, students’ engagement
Procedia PDF Downloads 5713828 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 23213827 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 8113826 Energy Trading for Cooperative Microgrids with Renewable Energy Resources
Authors: Ziaullah, Shah Wahab Ali
Abstract:
Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.Keywords: distributed energy management, information and communication technologies, microgrid, energy management
Procedia PDF Downloads 37513825 Application of Fourier Series Based Learning Control on Mechatronic Systems
Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt
Abstract:
A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.Keywords: climbing stairs, FSBLC, ILC, service robot
Procedia PDF Downloads 31413824 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques
Authors: Tomas Trainys, Algimantas Venckauskas
Abstract:
Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.
Procedia PDF Downloads 15013823 Like Making an Ancient Urn: Metaphor Conceptualization of L2 Writing
Authors: Muhalim Muhalim
Abstract:
Drawing on Lakoff’s theory of metaphor conceptualization, this article explores the conceptualization of language two writing (L2W) of ten students-teachers in Indonesia via metaphors. The ten postgraduate English language teaching students and at the same time (former) English teachers received seven days of intervention in teaching and learning L2. Using introspective log and focus group discussion, the results illuminate us that all participants are unanimous on perceiving L2W as process-oriented rather than product-oriented activity. Specifically, the metaphor conceptualizations exhibit three categories of process-oriented L2W: deliberate process, learning process, and problem-solving process. However, it has to be clarified from the outset that this categorization is not rigid because some of the properties of metaphors might belong to other categories. Results of the study and implications for English language teaching will be further discussed.Keywords: metaphor conceptualisation, second language, learning writing, teaching writing
Procedia PDF Downloads 41313822 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 19513821 The Unspoken Learning Landscape of Indigenous Peoples (IP) Learners: A Process Documentation and Analysis
Authors: Ailene B. Anonuevo
Abstract:
The aim of the study was to evaluate the quality of life presently available for the IP students in selected schools in the Division of Panabo City. This further explores their future dreams and current status in classes and examines some implications relative to their studies. The study adopted the mixed methodology and used a survey research design as the operational framework for data gathering. Data were collected by self-administered questionnaires and interviews with sixty students from three schools in Panabo City. In addition, this study describes the learners’ background and school climate as variables that might influence their performance in school. The study revealed that an IP student needs extra attention due to their unfavorable learning environment. The study also found out that like any other students, IP learners yearns for a brighter future with the support of our government.Keywords: IP learners, learning landscape, school climate, quality of life
Procedia PDF Downloads 22413820 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 49