Search results for: Organic Rankine Cycle (ORC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4429

Search results for: Organic Rankine Cycle (ORC)

1609 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling

Authors: Sarra Kitanou

Abstract:

Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.

Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation

Procedia PDF Downloads 78
1608 Numerical Homogenization of Nacre

Authors: M. Arunachalam, M. Pandey

Abstract:

Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.

Keywords: finite element, homogenization, inelastic deformation, staggered arrangement

Procedia PDF Downloads 318
1607 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault

Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari

Abstract:

Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.

Keywords: pipe lines , earthquake , fault , soil-fault interaction

Procedia PDF Downloads 452
1606 Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.

Authors: P. S. Rajinikanth, Shobana Mariappan, Jestin Chellian

Abstract:

The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application.

Keywords: nano emulsion, controlled release, 5 fluorouracil, skin penetration, skin irritation

Procedia PDF Downloads 500
1605 Structure-Constructivism in the Philosophy of Mathematics

Authors: Jeansou Moun

Abstract:

This study argues that constructivism and structuralism, which have been the two important schools of mathematical philosophy since the mid-19th century, can and should be synthesized into structure-constructivism. In fact, the philosophy of mathematics is divided into more than ten schools depending on the point of view. However, the biggest trend is Platonism which claims that mathematical objects are "abstract entities" that exists independently of the human mind and material objects. Its opposite is constructivism. According to the latter, mathematical objects are products of the construction of the human mind. However, whether the basis of the construction is a logical device, a symbolic system, or an empirical perception, it is subdivided into logicism, formalism, and intuitionism. However, these three schools themselves are further subdivided into various variants, and among them, structuralism, which emerged in the mid-20th century, is receiving the most attention. On the other hand, structuralism which emphasizes structure instead of individual objects, is divided into non-eliminative structuralism, which supports the a priori of structure, and non-eliminative structuralism, which rejects any abstract entity. In this context, it is believed that the structure itself is not an a priori entity but a result of the construction of the cognitive subject and that no object has ever been given to us in its full meaning from the outset. In other words, concepts are progressively structured through a dialectical cycle between sensory perception, imagination (abstraction), concepts, judgments, and reasoning. Symbols are needed for formal operation. However, without concrete manipulation, the formal operation cannot have any meaning. However, when formal structurization is achieved, the reality (object) itself is also newly structured. This is the "structure-constructivism".

Keywords: philosophy of mathematics, platonism, logicism, formalism, constructivism, structuralism, structure-constructivism

Procedia PDF Downloads 97
1604 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)

Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma

Abstract:

Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.

Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust

Procedia PDF Downloads 414
1603 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: circular arc helical gear, contact problem, optimal center distance, piezoelectric sheet, power generation

Procedia PDF Downloads 167
1602 Localized Analysis of Cellulosic Fibrous Insulation Materials

Authors: Chady El Hachem, Pan Ye, Kamilia Abahri, Rachid Bennacer

Abstract:

Considered as a building construction material, and regarding its environmental benefits, wood fiber insulation is the material of interest in this work. The definition of adequate elementary representative volume that guarantees reliable understanding of the hygrothermal macroscopic phenomena is very critical. At the microscopic scale, when subjected to hygric solicitations, fibers undergo local dimensionless variations. It is therefore necessary to master this behavior, which affects the global response of the material. This study consists of an experimental procedure using the non-destructive method, X-ray tomography, followed by morphological post-processing analysis using ImageJ software. A refine investigation took place in order to identify the representative elementary volume and the sufficient resolution for accurate structural analysis. The second part of this work was to evaluate the microscopic hygric behavior of the studied material. Many parameters were taken into consideration, like the evolution of the fiber diameters, distribution along the sorption cycle and the porosity, and the water content evolution. In addition, heat transfer simulations based on the energy equation resolution were achieved on the real structure. Further, the problematic of representative elementary volume was elaborated for such heterogeneous material. Moreover, the material’s porosity and its fibers’ thicknesses show very big correlation with the water content. These results provide the literature with very good understanding of wood fiber insulation’s behavior.

Keywords: hygric behavior, morphological characterization, wood fiber insulation material, x-ray tomography

Procedia PDF Downloads 267
1601 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene

Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn

Abstract:

Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.

Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders

Procedia PDF Downloads 100
1600 Lactic Acid, Citric Acid, and Potassium Bitartrate Non-Hormonal Prescription Vaginal PH Modulator Gel for the Prevention of Pregnancy

Authors: Shanna Su, Kathleen Vincent

Abstract:

Introduction: A non-hormonal prescription vaginal pH modulator (VPM) gel (Phexxi®), with active ingredients lactic acid, citric acid, and potassium bitartrate, has recently been approved for the prevention of pregnancy in the United States. The objective of this review is to compile the evidence available from published preclinical and clinical trials to support its use. Areas covered: PubMed was searched for published literature on VPM gel. Two Phase III trials were found on the clinicaltrials.gov database. The results demonstrated that VPM gel is safe, with minimal side effects, and effective (cumulative 6-7 cycle pregnancy rate of 4.1-13.65%, (Pearl Index 27.5) as a contraceptive. Microbicidal effects suggest the potential for the prevention of sexually transmitted infections (STIs); currently, a Phase III clinical trial is being conducted to evaluate the prevention of chlamydia and gonorrhea. Expert opinion: Non-hormonal reversible contraceptive options have been limited to the highly effective copper-releasing intrauterine device that requires insertion by a trained clinician and less effective coitally-associated barrier and spermicide options which are typically available over-the-counter. Spermicides, which improve the efficacy of barrier devices, may increase the risk of Human Immunodeficiency Virus (HIV)/STIs. VPM gel provides a new safe, effective non-hormonal contraceptive option with the potential for prevention of STIs.

Keywords: citric acid, lactic acid, non-hormonal contraception, potassium bitartrate, topical vaginal contraceptive, vaginal pH modulator gel

Procedia PDF Downloads 100
1599 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials

Authors: M. Zafar, S. Rasheed, Imran Hashmi

Abstract:

Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.

Keywords: biofilm, DWDs, pipe material, bacterial population

Procedia PDF Downloads 347
1598 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 403
1597 Investigation of Effects of Geomagnetic Storms Produced by Different Solar Sources on the Total Electron Content (TEC)

Authors: P. K. Purohit, Azad A. Mansoori, Parvaiz A. Khan, Purushottam Bhawre, Sharad C. Tripathi, A. M. Aslam, Malik A. Waheed, Shivangi Bhardwaj, A. K. Gwal

Abstract:

The geomagnetic storm represents the most outstanding example of solar wind-magnetospheric interaction, which causes global disturbances in the geomagnetic field as well as the trigger ionospheric disturbances. We study the behaviour of ionospheric Total Electron Content (TEC) during the geomagnetic storms. For the present investigation we have selected 47 intense geomagnetic storms (Dst ≤ -100nT) that were observed during the solar cycle 23 i.e. during 1998-2006. We then categorized these storms into four categories depending upon their solar sources like Magnetic Cloud (MC), Co-rotating Interaction Region (CIR), SH+ICME and SH+MC. We then studied the behaviour of ionospheric TEC at a mid latitude station Usuda (36.13N, 138.36E), Japan during these storm events produced by four different solar sources. During our study we found that the smooth variations in TEC are replaced by rapid fluctuations and the value of TEC is strongly enhanced during the time of these storms belonging to all the four categories. However, the greatest enhancements in TEC are produced during those geomagnetic storms which are either caused by sheath driven magnetic cloud (SH+MC) or sheath driven ICME (SH+ICME). We also derived the correlation between the TEC enhancements produced during storms of each category with the minimum Dst. We found the strongest correlation exists for the SH+ICME category followed by SH+MC, MC and finally CIR. Since the most intense storms were either caused by SH+ICME or SH+MC while the least intense storms were caused by CIR, consequently the correlation was the strongest with SH+ICME and SH+MC and least with CIR.

Keywords: GPS, TEC, geomagnetic storm, sheath driven magnetic cloud

Procedia PDF Downloads 544
1596 Influence of Agroforestry Trees Leafy Biomass and Nitrogen Fertilizer on Crop Growth Rate and Relative Growth Rate of Maize

Authors: A. B. Alarape, O. D. Aba

Abstract:

The use of legume tree pruning as mulch in agroforestry system is a common practice to maintain soil organic matter and improve soil fertility in the tropics. The study was conducted to determine the influence of agroforestry trees leafy biomass and nitrogen fertilizer on crop growth rate and relative growth rate of maize. The experiments were laid out as 3 x 4 x 2 factorial in a split-split plot design with three replicates. Control, biomass species (Parkia biglobosa and Albizia lebbeck) as main plots were considered, rates of nitrogen considered include (0, 40, 80, 120 kg N ha⁻¹) as sub-plots, and maize varieties (DMR-ESR-7 and 2009 EVAT) were used as sub-sub plots. Data were analyzed using descriptive and inferential statistics (ANOVA) at α = 0.05. Incorporation of leafy biomass was significant in 2015 on Relative Growth Rate (RGR), while nitrogen application was significant on Crop Growth Rate (CGR). 2009 EVAT had higher CGR in 2015 at 4-6 and 6-8 WAP. Incorporation of Albizia leaves enhanced the growth of maize than Parkia leaves. Farmers are, therefore, encouraged to use Albizia leaves as mulch to enrich their soil for maize production and most especially, in case of availability of inorganic fertilizers. Though, production of maize with biomass and application of 120 kg N ha⁻¹ will bring better growth of maize.

Keywords: agroforestry trees, fertilizer, growth, incorporation, leafy biomass

Procedia PDF Downloads 191
1595 Occurrence and Geological Setting of the Black Shales Outcrops in Malaysia

Authors: Hassan M. Baioumy, Yuniarti Ulfa

Abstract:

Paleozoic, Mesozoic and Cenozoic black shales that can be a potential source of energy and precious metals are widely distributed in Malaysia Peninsula, Sarawak and Sabah. Two Paleozoic black shales outcrops were reported in the Langkawi Island belonging to the Cambrian fluvial Machinchang Formation and the Silurian glaciomarine Singa Formation. More the seventeen occurrences of Paleozoic black shales outcrops have been found in the Peninsular Malaysia that range in age from Devonian, Carboniferous, and Permian in the Terengganu, Perlis, Pahang, and Perak States. Mesozoic black shales outcrops occur in several places in both the Peninsular Malaysia and Sarawak. In the Peninsular Malaysia, Triassic black shales occur in the Nami area, Northern Kedah and in the Pahang area. In Sarawak, Triassic black shales have been reported in the Bau area. Cenozoic black shales outcrops were reported in both Sarawak at Miri area and Sabah at the Ranau and Tenom areas. Preliminary mineralogical and geochemical investigations on some of these black shales outcrops showed distinct compositional variations among these black shales outcrops probably due to variations in their source area composition and/or depositional and diagenetic settings of these shales. Some of these shalese also subjected to post-depositional hydrothermal mineralization that enriched these shales with Au-bearing minerals such as pyrite, calchopyrite, and arsenopyrite. Many of the studied black shales outcrops look rich in organic matter, which increase the possibility of using these black shales as an unconventional energy resource.

Keywords: black shales, energy, mineralization, Malaysia

Procedia PDF Downloads 429
1594 The Characteristics of Transformation of Institutional Changes and Georgia

Authors: Nazira Kakulia

Abstract:

The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.

Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system

Procedia PDF Downloads 264
1593 Synthesis and Characterization of Some 1, 2, 3-Triazole Derivatives Containing the Chalcone Moiety and Evaluation for their Antimicrobial and Antioxidant Activity

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Triazoles are basic five-membered ring heterocycles with an unsaturated, six-delocalized electron ring system. Since the dawn of click chemistry, triazoles have represented a functional heterocyclic core that has been the foundation of medicinal chemistry. The compounds with 1,2,3-triazole rings can be used in several fields, including medicine, organic synthesis, polymer chemistry, fluorescent imaging, horticulture, and industries, to name a few. Besides that, they found it to have health applications in the prevention and reduction of the risk of diseases, such as anti-cancer, antimicrobial, antiviral, and anti-inflammatory properties. Here, we present the synthesis of twelve 1,2,3-triazolyl chalcone derivatives (4a–l), which were produced in high yields by coupling substituted aldehydes and triazolyl acetophenone (3a–d) in ethanol. The title products were characterized by physicochemical, infrared, nuclear magnetic resonance, and mass spectral methods. The in vitro tests were used to evaluate the antioxidant and antimicrobial activity of each of the prepared molecules. The preliminary assessment and 2,2-diphenyl-1-picrylhydrazyl activity of the title compounds showed significantly higher antibacterial activity and moderate-to-good antifungal and antioxidant activities compared to their standards. This work presents the synthesis of triazolyl chalcone derivatives and their biological activity. Based on the findings, these compounds could be used as lead compounds in antimicrobial and antioxidant research in the future.

Keywords: antibacterial activity, antifungal activity, antioxidant activity, chalcone, 1, 2, 3-triazole

Procedia PDF Downloads 126
1592 Ground-Structure Interaction Analysis of Aged Tunnels

Authors: Behrang Dadfar, Hossein Bidhendi, Jimmy Susetyo, John Paul Abbatangelo

Abstract:

Finding structural demand under various conditions that a structure may experience during its service life is an important step towards structural life-cycle analysis. In this paper, structural demand for the precast concrete tunnel lining (PCTL) segments of Toronto’s 60-year-old subway tunnels is investigated. Numerical modelling was conducted using FLAC3D, a finite difference-based software capable of simulating ground-structure interaction and ground material’s flow in three dimensions. The specific structural details of the segmental tunnel lining, such as the convex shape of the PCTL segments at radial joints and the PCTL segment pockets, were considered in the numerical modelling. Also, the model was developed in a way to accommodate the flexibility required for the simulation of various deterioration scenarios, shapes, and patterns that have been observed over more than 20 years. The soil behavior was simulated by using plastic-hardening constitutive model of FLAC3D. The effect of the depth of the tunnel, the coefficient of lateral earth pressure as well as the patterns of deterioration of the segments were studied. The structural capacity under various deterioration patterns and the existing loading conditions was evaluated using axial-flexural interaction curves that were developed for each deterioration pattern. The results were used to provide recommendations for the next phase of tunnel lining rehabilitation program.

Keywords: precast concrete tunnel lining, ground-structure interaction, numerical modelling, deterioration, tunnels

Procedia PDF Downloads 161
1591 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 247
1590 Building Cardiovascular Fitness through Plyometric Training

Authors: Theresa N. Uzor

Abstract:

The word cardiovascular fitness is a topic of much interest to people of Nigeria, especially during this time, some heart diseases run in families. Cardiovascular fitness is the ability of the heart and lungs to supply-rich blood to the working muscle tissues. This type of fitness is a health-related component of physical fitness that is brought about by sustained physical activity such as plyometric training. Plyometric is a form of advanced fitness training that uses fast muscular contractions to improve power and speed in the sports performance by coaches and athletes. Plyometric training involves a rapid stretching of muscle (eccentric phase) immediately followed by a concentric or shortening action of the same muscle and connective tissue. However, the most basic example of true plyometric training is running and can be safe for a wide variety of populations. This paper focused on building cardiovascular health through Plyometric Training. The centre focus of the article is cardiovascular fitness and plyometric training with factors of cardiovascular fitness. Plyometric training at any age provides multiple benefits even beyond weight control and weight loss, decrease the risk of cardiovascular diseases, stroke, high blood pressure, diabetes, and other diseases, among other benefits of plyometric training to cardiovascular fitness. Participation in plyometric training will increase metabolism of an individual, thereby burning more calories even when at rest and reduces weight is also among the benefits of plyometric training. Some guidelines were recommended for planning plyometric training programme to minimise the chance of injury. With plyometric training in Nigeria, fortune can change for good, especially now that there has been an increase in cardiovascular diseases within the society for great savings would be saved.

Keywords: aerobic, cardiovascular, concentric, stretch-shortening cycle, plyometric

Procedia PDF Downloads 140
1589 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation

Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)

Procedia PDF Downloads 369
1588 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames

Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh

Abstract:

Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.

Keywords: ACC, SCBF frames, spatial structures, CFST frames

Procedia PDF Downloads 197
1587 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 324
1586 New Active Dioxin Response Element Sites in Regulatory Region of Human and Viral Genes

Authors: Ilya B. Tsyrlov, Dmitry Y. Oshchepkov

Abstract:

A computational search for dioxin response elements (DREs) in genes of proteins comprising the Ah receptor (AhR) cytosolic core complex was performed by highly efficient tool SITECON. Eventually, the following number of new DREs in 5’flanking region was detected by SITECON: one in AHR gene, five in XAP2, eight in HSP90AA1, and three in HSP90AB1 genes. Numerous DREs found in genes of AhR and AhR cytosolic complex members would shed a light on potential mechanisms of expression, the stoichiometry of unliganded AhR core complex, and its degradation vs biosynthesis dynamics resulted from treatment of target cells with the AhR most potent ligand, 2,3,7,8-TCDD. With human viruses, reduced susceptibility to TCDD of geneencoding HIV-1 P247 was justified by the only potential DRE determined in gag gene encoding HIV-1 P24 protein, whereas the regulatory region of CMV genes encoding IE gp/UL37 has five potent DRE, 1.65 kb/UL36 – six DRE, pp65 and pp71 – each has seven DRE, and pp150 – ten DRE. Also, from six to eight DRE were determined with SITECON in the regulatory region of HSV-1 IE genes encoding tegument proteins, UL36 and UL37, and of UL19 gene encoding bindingglycoprotein C (gC). So, TCDD in the low picomolar range may activate in human cells AhR: Arnt transcription pathway that triggers CMV and HSV-1 reactivation by binding to numerous promoter DRE within immediate-early (IE) genes UL37 and UL36, thus committing virus to the lytic cycle.

Keywords: dioxin response elements, Ah receptor, AhR: Arnt transcription pathway, human and viral genes

Procedia PDF Downloads 104
1585 Closed-Loop Supply Chain: A Study of Bullwhip Effect Using Simulation

Authors: Siddhartha Paul, Debabrata Das

Abstract:

Closed-loop supply chain (CLSC) management focuses on integrating forward and reverse flow of material as well as information to maximize value creation over the entire life-cycle of a product. Bullwhip effect in supply chain management refers to the phenomenon where a small variation in customers’ demand results in larger variation of orders at the upstream levels of supply chain. Since the quality and quantity of products returned to the collection centers (as a part of reverse logistics process) are uncertain, bullwhip effect is inevitable in CLSC. Therefore, in the present study, first, through an extensive literature survey, we identify all the important factors related to forward as well as reverse supply chain which causes bullwhip effect in CLSC. Second, we develop a system dynamics model to study the interrelationship among the factors and their effect on the performance of overall CLSC. Finally, the results of the simulation study suggest that demand forecasting, lead times, information sharing, inventory and work in progress adjustment rate, supply shortages, batch ordering, price variations, erratic human behavior, parameter correcting, delivery time delays, return rate of used products, manufacturing and remanufacturing capacity constraints are the important factors which have a significant influence on system’s performance, specifically on bullwhip effect in a CLSC.

Keywords: bullwhip effect, closed-loop supply chain, system dynamics, variance ratio

Procedia PDF Downloads 163
1584 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 256
1583 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application

Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen

Abstract:

Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.

Keywords: MAO, plasma, graft polymerization, biomedical application

Procedia PDF Downloads 259
1582 Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability

Authors: Mohamed Loutou, Mohamed Hajjaji, Mohamed Ait Babram, Mohammed Mansori, Rachid Hakkou, Claude Favotto

Abstract:

More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption.

Keywords: phosphate sludge, clay, ceramic properties, granule

Procedia PDF Downloads 505
1581 Evaluation of Biochemical Changes in Some Liver Functions and Anti-Oxidant Parameters in Wistar Rats Exposed to Benzene

Authors: Ezomoh O. Olubunmi, Chukwuma S. Anakwe, Bekewei Progress, Prohp The Prophet

Abstract:

Benzene is a volatile organic compound that is recognised as carcinogenic to humans. The objective of the current investigation was to ascertain the impact of the administration of benzene at varying concentrations on the livers of Wistar rats. The 40 adult female Wistar rats were divided into 10 groups, each consisting of four rats. For 28 days, Group 1 received distilled water, while Groups 2 to 10 were administered 0.04,0.06,0.08,0.2,0.4,0.6,0.8,1.0, and 1.2 ml/kg body weight of analytical grade benzene. Blood samples were obtained through cardiac puncture for liver function assessment, while the animals in groups 1 to 5 were euthanised after the 28th day under chloroform anaesthesia. The animals in groups 6 to 10 died midway through the study period. Antioxidant analysis was conducted on liver tissues that were collected and homogenised. The results indicated a substantial (p<0.05), dose-dependent increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities as a result of benzene exposure. Additionally, benzene resulted in a substantial reduction in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver tissue, as well as an increase in malondialdehyde (MDA) concentrations, and this effect was dose-dependent. These findings emphasise the hepatotoxic effects of benzene, even at concentrations that are relatively low.

Keywords: benzene, alanine aminotransferase, aspartate aminotransferase, alkaline phosphate, antioxidants, superoxide dismutase, catalase, glutathione peroxidase

Procedia PDF Downloads 24
1580 Activation of Spermidine/Spermine N1-Acetyltransferase 1 (SSAT-1) as Biomarker in Breast Cancer

Authors: Rubina Ghani, Sehrish Zia, Afifa Fatima Rafique, Shaista Emad

Abstract:

Background: Cancer is a leading cause of death worldwide, with breast cancer being the most common cancer in women. Pakistan has the highest rate of breast cancer cases among Asian countries. Early and accurate diagnosis is crucial for treatment outcomes and quality of life. Method: It is a case-control study with a sample size of 150. There were 100 suspected cancer cases, 25 healthy controls, and 25 diagnosed cancer cases. To analyze SSAT-1 mRNA expression in whole blood, Zymo Research Quick-RNA Miniprep and Innu SCRIPT—One Step RT-PCR Syber Green kits were used. Patients were divided into three groups: 100 suspected cancer cases, 25 controls, and 25 confirmed breast cancer cases. Result: The total mRNA was isolated, and the expression of SSAT-1 was measured using RT-qPCR. The threshold cycle (Ct) values were used to determine the amount of each mRNA. Ct values were then calculated by taking the difference between the CtSSAT-1 and Ct GAPDH, and further Ct values were calculated with the median absolute deviation for all the samples within the same experimental group. Samples that did not correlate with the results were taken as outliers and excluded from the analysis. The relative fold change is shown as 2^-Ct values. Suspected cases showed a maximum fold change of 32.24, with a control fold change of 1.31. Conclusion: The study reveals an overexpression of SSAT-1 in breast cancer. Furthermore, we can use SSAT-1 as a diagnostic, prognostic, and therapeutic marker for early diagnosis of cancer.

Keywords: breast cancer, spermidine/spermine, qPCR, mRNA

Procedia PDF Downloads 38