Search results for: communal practice network
6196 A Literature Review about Responsible Third Cycle Supervision
Authors: Johanna Lundqvist
Abstract:
Third cycle supervision is a multifaceted and complex task for supervisors in higher education. It progresses over several years and is affected by several proximal and distal factors. It can result in positive learning outcomes for doctoral students and high-quality publications. However, not all doctoral students thrive during their doctoral studies; nor do they all complete their studies. This is problematic for both the individuals themselves as well as society at large: doctoral students are valuable and important in current research, future research and higher education. The aim of this literature review is to elucidate what responsible third cycle supervision can include and be in practice. The question posed is as follows: according to recent literature, what is it that characterises responsible third cycle supervision in which doctoral students can thrive and develop their research knowledge and skills? A literature review was conducted, and the data gathered from the literature regarding responsible third cycle supervision was analysed by means of a thematic analysis. The analysis was inspired by the notion of responsible inclusion outlined by David Mitchell. In this study, the term literature refers to research articles and regulations. The results (preliminary) show that responsible third cycle supervision is associated with a number of interplaying factors (themes). These are as follows: committed supervisors and doctoral students; a clear vision and research problem; an individual study plan; adequate resources; interaction processes and constructive feedback; creativity; cultural awareness; respect and research ethics; systematic quality work and improvement efforts; focus on overall third cycle learning goals; and focus on research presentations and publications. Thus, responsible third cycle supervision can occur if these factors are realized in practice. This literature review is of relevance to evaluators, researchers, and management in higher education, as well as third cycle supervisors.Keywords: doctoral student, higher education, third cycle supervisors, third cycle programmes
Procedia PDF Downloads 1376195 Teacher Agency in Localizing Textbooks for International Chinese Language Teaching: A Case of Minsk State Linguistic University
Authors: Min Bao
Abstract:
The teacher is at the core of the three fundamental factors in international Chinese language teaching, the other two being the textbook and the method. Professional development of the teacher comprises a self-renewing process that is characterized by knowledge impartment and self-reflection, in which individual agency plays a significant role. Agency makes a positive contribution to teachers’ teaching practice and their life-long learning. This study, taking Chinese teaching and learning in Minsk State Linguistic University of Belarus as an example, attempts to understand agency by investigating the teacher’s strategic adaptation of textbooks to meet local needs. Firstly, through in-depth interviews, teachers’ comments on textbooks are collected and analyzed to disclose their strategies of adapting and localizing textbooks. Then, drawing on the theory of 'The chordal triad of agency', the paper reveals the process in which teacher agency is exercised as well as its rationale. The results verify the theory, that is, given its temporal relationality, teacher agency is constructed through a combination of experiences, purposes and aims, and context, i.e., projectivity, iteration and practice-evaluation as mentioned in the theory. Evidence also suggests that the three dimensions effect differently; It is usually one or two dimensions that are of greater effects on the construction of teacher agency. Finally, the paper provides four specific insights to teacher development in international Chinese language teaching: 1) when recruiting teachers, priority be given on candidates majoring in Chinese language or international Chinese language teaching; 2) measures be taken to assure educational quality of the two said majors at various levels; 3) pre-service teacher training program be tailored for improved quality, and 4) management of overseas Confucius Institutions be enhanced.Keywords: international Chinese language teaching, teacher agency, textbooks, localization
Procedia PDF Downloads 1566194 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 6636193 Finding a Redefinition of the Relationship between Rural and Urban Knowledge
Authors: Bianca Maria Rulli, Lenny Valentino Schiaretti
Abstract:
The considerable recent urbanization has increasingly sharpened environmental and social problems all over the world. During the recent years, many answers to the alarming attitudes in modern cities have emerged: a drastic reduction in the rate of growth is becoming essential for future generations and small scale economies are considered more adaptive and sustainable. According to the concept of degrowth, cities should consider surpassing the centralization of urban living by redefining the relationship between rural and urban knowledge; growing food in cities fundamentally contributes to the increase of social and ecological resilience. Through an innovative approach, this research combines the benefits of urban agriculture (increase of biological diversity, shorter and thus more efficient supply chains, food security) and temporary land use. They stimulate collaborative practices to satisfy the changing needs of communities and stakeholders. The concept proposes a coherent strategy to create a sustainable development of urban spaces, introducing a productive green-network to link specific areas in the city. By shifting the current relationship between architecture and landscape, the former process of ground consumption is deeply revised. Temporary modules can be used as concrete tools to create temporal areas of innovation, transforming vacant or marginal spaces into potential laboratories for the development of the city. The only permanent ground traces, such as foundations, are minimized in order to allow future land re-use. The aim is to describe a new mindset regarding the quality of space in the metropolis which allows, in a completely flexible way, to bring back the green and the urban farming into the cities. The wide possibilities of the research are analyzed in two different case-studies. The first is a regeneration/connection project designated for social housing, the second concerns the use of temporary modules to answer to the potential needs of social structures. The intention of the productive green-network is to link the different vacant spaces to each other as well as to the entire urban fabric. This also generates a potential improvement of the current situation of underprivileged and disadvantaged persons.Keywords: degrowth, green network, land use, temporary building, urban farming
Procedia PDF Downloads 5036192 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model
Authors: Bin Mu, Site Li, Shijin Yuan
Abstract:
Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model
Procedia PDF Downloads 2276191 Scope of Virtualization
Authors: Pavneet Kaur, Palak Sharma
Abstract:
Virtualization is a term that basically describe creation of virtual version of something like operating system, network, etc. Virtualization is a technology which is in use from 1970, but with new developments and inventions, it is now useful in education, software development etc. This paper will describe basic introduction of virtualization, along with its various categories. It will also describe use of virtualization in software engineering, its various benefits and shortcomings.Keywords: virtualization, hardware, software, os
Procedia PDF Downloads 3696190 Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study
Authors: P. Sathyathas, H. M. I. S. W. Herath, T. Amalraj, U. J. M. A. L. Jayasinghe
Abstract:
Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors.Keywords: abdomen-pelvic region, computed tomography, exposure parameters, radiation dose
Procedia PDF Downloads 3276189 A Paradigm Shift into the Primary Teacher Education Program in Bangladesh
Authors: Happy Kumar Das, Md. Shahriar Shafiq
Abstract:
This paper portrays an assumed change in the primary teacher education program in Bangladesh. An initiative has been taken with a vision to ensure an integrated approach to developing trainee teachers’ knowledge and understanding about learning at a deeper level, and with that aim, the Diploma in Primary Education (DPEd) program replaces the Certificate-in-Education (C-in-Ed) program in Bangladeshi context for primary teachers. The stated professional values of the existing program such as ‘learner-centered’, ‘reflective’ approach to pedagogy tend to contradict the practice exemplified through the delivery mechanism. To address the challenges, through the main two components (i) Training Institute-based learning and (ii) School-based learning, the new program tends to cover knowledge and value that underpin the actual practice of teaching. These two components are given approximately equal weighting within the program in terms of both time, content and assessment as the integration seeks to combine theoretical knowledge with practical knowledge and vice versa. The curriculum emphasizes a balance between the taught modules and the components of the practicum. For example, the theories of formative and summative assessment techniques are elaborated through focused reflection on case studies as well as observation and teaching practice in the classroom. The key ideology that is reflected through this newly developed program is teacher’s belief in ‘holistic education’ that can lead to creating opportunities for skills development in all three (Cognitive, Social and Affective) domains simultaneously. The proposed teacher education program aims to address these areas of generic skill development alongside subject-specific learning outcomes. An exploratory study has been designed in this regard where 7 Primary Teachers’ Training Institutes (PTIs) in 7 divisions of Bangladesh was used for experimenting DPEd program. The analysis was done based on document analysis, periodical monitoring report and empirical data gathered from the experimental PTIs. The findings of the study revealed that the intervention brought positive change in teachers’ professional beliefs, attitude and skills along with improvement of school environment. Teachers in training schools work together for collective professional development where they support each other through lesson study, action research, reflective journals, group sharing and so on. Although the DPEd program addresses the above mentioned factors, one of the challenges of the proposed program is the issue of existing capacity and capabilities of the PTIs towards its effective implementation.Keywords: Bangladesh, effective implementation, primary teacher education, reflective approach
Procedia PDF Downloads 2176188 Improvements in Double Q-Learning for Anomalous Radiation Source Searching
Authors: Bo-Bin Xiaoa, Chia-Yi Liua
Abstract:
In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.Keywords: double Q learning, dueling network, NoisyNet, source searching
Procedia PDF Downloads 1126187 Changing Roles and Skills of Urban Planners in the Turkish Planning System
Authors: Fatih Eren
Abstract:
This research aims to find an answer to the question of which knowledge and skills do the Turkish urban planners need in their business practice. Understanding change in cities, making a prediction, making an urban decision and putting it into practice, working together with actors from different organizations from various academic disciplines, persuading people to accept something and developing good personal and professional relationships have become very complex and difficult in today’s world. The truth is that urban planners work in many institutions under various positions which are not similar to each other by field of activity and all planners are forced to develop some knowledge and skills for success in their business in Turkey. This study targets to explore what urban planners do in the global information age. The study is the product of a comprehensive nation-wide research. In-depth interviews were conducted with 174 experienced urban planners, who work in different public institutions and private companies under varied positions in the Turkish Planning System, to find out knowledge and skills needed by next-generation urban planners. The main characteristics of next-generation urban planners are defined; skills that planners needed today are explored in this paper. Findings show that the positivist (traditional) planning approach has given place to anti-positivist planning approaches in the Turkish Planning System so next-generation urban planners who seek success and want to carve out a niche for themselves in business life have to equip themselves with innovative skills. The result section also includes useful and instructive findings for planners about what is the meaning of being an urban planner and what is the ideal content and context of planning education at universities in the global age.Keywords: global information age, Turkish Planning System, the institutional approach, urban planners, roles, skills, values
Procedia PDF Downloads 2856186 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 2506185 A Deleuzean Feminist Analysis of the Everyday, Gendered Performances of Teen Femininity: A Case Study on Snaps and Selfies in East London
Authors: Christine Redmond
Abstract:
This paper contributes to research on gendered, digital identities by exploring how selfies offer scope for disrupting and moving through gendered and racial ideals of feminine beauty. The selfie involves self-presentation, filters, captions, hashtags, online publishing, likes and more, constituting the relationship between subjectivity, practice and social use of selfies a complex process. Employing qualitative research methods on youth selfies in the UK, the author investigates interdisciplinary entangling between studies of social media and fields within gender, media and cultural studies, providing a material discursive treatment of the selfie as an embodied practice. Drawing on data collected from focus groups with teenage girls in East London, the study explores how girls experience and relate to selfies and snaps in their everyday lives. The author’s Deleuzean feminist approach suggests that bodies and selfies are not individual, disembodied entities between which there is a mediating inter-action. Instead, bodies and selfies are positioned as entangled to a point where it becomes unclear as to where a selfie ends and a body begins. Recognising selfies not just as images but as material and social assemblages opens up possibilities for unpacking the selfie in ways that move beyond the representational model in some studies of socially mediated digital images. The study reveals how the selfie functions to enable moments of empowerment within limiting, dominant ideologies of Euro-centrism, patriarchy and heteronormativity.Keywords: affect theory, femininity, gender, heteronormativity, photography, selfie, snapchat
Procedia PDF Downloads 2476184 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1886183 Prediction of Road Accidents in Qatar by 2022
Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa
Abstract:
There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.Keywords: road safety, prediction, accident, model, Qatar
Procedia PDF Downloads 2586182 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 1496181 Integrating Flipped Instruction to Enhance Second Language Acquisition
Authors: Borja Ruiz de Arbulo Alonso
Abstract:
This paper analyzes the impact of flipped instruction in adult learners of Spanish as a second language in a face-to-face course at Boston University. Given the limited amount of contact hours devoted to studying world languages in the American higher education system, implementing strategies to free up classroom time for communicative language practice is key to ensure student success in their learning process. In an effort to improve the way adult learners acquire a second language, this paper examines the role that regular pre-class and web-based exposure to Spanish grammar plays in student performance at the end of the academic term. It outlines different types of web-based pre-class activities and compares this approach to more traditional classroom practice. To do so, this study works for three months with two similar groups of adult learners in an intermediate-level Spanish class. Both groups use the same course program and have the same previous language experience, but one receives an additional set of instructor-made online materials containing a variety of grammar explanations and online activities that need to be reviewed before attending class. Since the online activities cover material and concepts that have not yet been studied in class, students' oral and written production in both groups is measured by means of a writing activity and an audio recording at the end of the three-month period. These assessments will ascertain the effects of exposing the control group to the grammar of the target language prior to each lecture throughout and demonstrate where flipped instruction helps adult learners of Spanish achieve higher performance, but also identify potential problems.Keywords: educational technology, flipped classroom, second language acquisition, student success
Procedia PDF Downloads 1256180 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt
Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer
Abstract:
Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening
Procedia PDF Downloads 526179 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 1236178 A Complex Network Approach to Structural Inequality of Educational Deprivation
Authors: Harvey Sanchez-Restrepo, Jorge Louca
Abstract:
Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics
Procedia PDF Downloads 1226177 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 1006176 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data
Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim
Abstract:
Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth
Procedia PDF Downloads 3176175 Skills and Abilities Expected from Professionals Conducting Serious Crimes Investigations: A Descriptive Study from Turkey
Authors: Burak M. Gonultas
Abstract:
Criminal investigation provides a practical contribution to this process while criminology provides a theoretical background in the apprehension of criminals arrest and clarification of crimes. However, studies on criminal investigation, which is a practical aspect of this process, are not sufficient. Every crime involves different dynamics in terms of investigation. But investigations of serious crimes are versatile and contains complex processes because of cases they are conducted. Therefore, professionals who conduct serious crime investigations differ in some aspects from others in the field. The most fundamental element of this differentiation is skills and abilities of these professionals. According to Eurostat data, Turkey is in an important position in terms of homicide rates. Therefore, in Turkey practice of serious crime investigation is specialized. The present study aims to research the skills and abilities expected from professionals in conducting an effective serious criminal investigation in Turkey and so aims to offer a number of suggestions. 25 emerged ability and skills collected from literature were asked to professionals (n=289) with semi-structured form according to 5 provinces with the highest and 2 provinces with the lowest number of serious crime cases. Three data categories were collected during experience: 1- Five most important skills and abilities, 2- The most important skills for knowledge and inquiry management and 3- Ability and skills that stand out for five stages of serious criminal investigation. The most rated skills and abilities are investigative skill (13%, n=134), planning/designing (9,2%, n=95) and interpersonal relations/communication (8,8%, n=91) in 1010 skills and abilities. While the 1st and 2nd suggest elections of these professionals, the 3rd also suggests how and what type of training will be given to these professionals. This practice differs from other studies in the area in terms of separately addressing the skills and abilities expected in stages of investigation and in terms of selected methodology.Keywords: ability, criminal investigation, criminology, homicide, serious crimes, skill, Turkey
Procedia PDF Downloads 2746174 Pathway to Sustainable Shipping: Electric Ships
Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang
Abstract:
Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.Keywords: cost reduction, electric ship, environmental protection, sustainable shipping
Procedia PDF Downloads 776173 The Birth Connection: An Examination of the Relationship between Her Birth Event and Infant Feeding among African American Mothers
Authors: Nicole Banton
Abstract:
The maternal and infant mortality rate of Blacks is three times that of Whites in the US. Research indicates that breastfeeding lowers both. In this paper, the researcher examines how the ideas that Black/African American mothers had about breastfeeding before, during, and after pregnancy (postpartum) affected whether or not they initiated breastfeeding. The researcher used snowball sampling to recruit thirty African-American mothers from the Orlando area. At the time of her interview, each mother had at least one child who was at least three years old. Through in-depth face-to-face interviews, the researcher investigated how mothers’ healthcare providers affected their decision-making about infant feeding, as well as how the type of birth that she had (e.g., preterm, vaginal, c-section, full term) affected her actual versus idealized infant feeding practice. Through our discussions, we explored how pre-pregnancy perceptions, birth and postpartum experiences, social support, and the discourses surrounding motherhood within an African-American context affected the perceptions and experiences that the mothers in the study had with their infant feeding practice(s). Findings suggest that the pregnancy and birth experiences of the mothers in the study influenced whether or not they breastfed exclusively, combined breastfeeding and infant formula use, or used infant formula exclusively. Specifically, the interplay of invocation of agency (the ability to control their bodies before, during, and after birth), birth outcomes, and the interaction that the mothers in this study had with resources, human and material, had the highest impact on the initiation, duration, and attitude toward breastfeeding.Keywords: African American mothers, maternal health, breastfeeding, birth, midwives, obstetricians, hospital birth, breast pumps, formula use, infant feeding, lactation consultant, postpartum, vaginal birth, c-section, familial support, social support, work, pregnancy
Procedia PDF Downloads 826172 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant
Authors: John K. Avor, Choong-Koo Chang
Abstract:
The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability
Procedia PDF Downloads 1716171 Resilience of Infrastructure Networks: Maintenance of Bridges in Mountainous Environments
Authors: Lorenza Abbracciavento, Valerio De Biagi
Abstract:
Infrastructures are key elements to ensure the operational functionality of the transport system. The collapse of a single bridge or, equivalently, a tunnel can leads an entire motorway to be considered completely inaccessible. As a consequence, the paralysis of the communications network determines several important drawbacks for the community. Recent chronicle events have demonstrated that ensuring the functional continuity of the strategic infrastructures during and after a catastrophic event makes a significant difference in terms of life and economical losses. Moreover, it has been observed that RC structures located in mountain environments show a worst state of conservation compared to the same typology and aging structures located in temperate climates. Because of its morphology, in fact, the mountain environment is particularly exposed to severe collapse and deterioration phenomena, generally: natural hazards, e.g. rock falls, and meteorological hazards, e.g. freeze-thaw cycles or heavy snows. For these reasons, deep investigation on the characteristics of these processes becomes of fundamental importance to provide smart and sustainable solutions and make the infrastructure system more resilient. In this paper, the design of a monitoring system in mountainous environments is presented and analyzed in its parts. The method not only takes into account the peculiar climatic conditions, but it is integrated and interacts with the environment surrounding.Keywords: structural health monitoring, resilience of bridges, mountain infrastructures, infrastructural network, maintenance
Procedia PDF Downloads 776170 Translation Quality Assessment in Fansubbed English-Chinese Swearwords: A Corpus-Based Study of the Big Bang Theory
Authors: Qihang Jiang
Abstract:
Fansubbing, the combination of fan and subtitling, is one of the main branches of Audiovisual Translation (AVT) having kindled more and more interest of researchers into the AVT field in recent decades. In particular, the quality of so-called non-professional translation seems questionable due to the non-transparent qualification of subtitlers in a huge community network. This paper attempts to figure out how YYeTs aka 'ZiMuZu', the largest fansubbing group in China, translates swearwords from English to Chinese for its fans of the prevalent American sitcom The Big Bang Theory, taking cultural, social and political elements into account in the context of China. By building a bilingual corpus containing both the source and target texts, this paper found that most of the original swearwords were translated in a toned-down manner, probably due to Chinese audiences’ cultural and social network features as well as the strict censorship under the Chinese government. Additionally, House (2015)’s newly revised model of Translation Quality Assessment (TQA) was applied and examined. Results revealed that most of the subtitled swearwords achieved their pragmatic functions and exerted a communicative effect for audiences. In conclusion, this paper enriches the empirical research concerning House’s new TQA model, gives a full picture of the subtitling of swearwords in AVT field and provides a practical guide for the practitioners in their career of subtitling.Keywords: corpus-based approach, fansubbing, pragmatic functions, swearwords, translation quality assessment
Procedia PDF Downloads 1426169 A Review of Accuracy Optical Surface Imaging Systems for Setup Verification During Breast Radiotherapy Treatment
Authors: Auwal Abubakar, Ahmed Ahidjo, Shazril Imran Shaukat, Noor Khairiah A. Karim, Gokula Kumar Appalanaido, Hafiz Mohd Zin
Abstract:
Background: The use of optical surface imaging systems (OSISs) is increasingly becoming popular in radiotherapy practice, especially during breast cancer treatment. This study reviews the accuracy of the available commercial OSISs for breast radiotherapy. Method: A literature search was conducted and identified the available commercial OSISs from different manufacturers that are integrated into radiotherapy practice for setup verification during breast radiotherapy. Studies that evaluated the accuracy of the OSISs during breast radiotherapy using cone beam computed tomography (CBCT) as a reference were retrieved and analyzed. The physics and working principles of the systems from each manufacturer were discussed together with their respective strength and limitations. Results: A total of five (5) different commercially available OSISs from four (4) manufacturers were identified, each with a different working principle. Six (6) studies were found to evaluate the accuracy of the systems during breast radiotherapy in conjunction with CBCT as a goal standard. The studies revealed that the accuracy of the system in terms of mean difference ranges from 0.1 to 2.1 mm. The correlation between CBCT and OSIS ranges between 0.4 and 0.9. The limit of agreements obtained using bland Altman analysis in the studies was also within an acceptable range. Conclusion: The OSISs have an acceptable level of accuracy and could be used safely during breast radiotherapy. The systems are non-invasive, ionizing radiation-free, and provide real-time imaging of the target surface at no extra concomitant imaging dose. However, the system should only be used to complement rather than replace x-ray-based image guidance techniques such as CBCT.Keywords: optical surface imaging system, Cone beam computed tomography (CBCT), surface guided radiotherapy, Breast radiotherapy
Procedia PDF Downloads 666168 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor
Authors: Panupong Makvichian
Abstract:
Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor
Procedia PDF Downloads 1986167 Social Vulnerability Mapping in New York City to Discuss Current Adaptation Practice
Authors: Diana Reckien
Abstract:
Vulnerability assessments are increasingly used to support policy-making in complex environments, like urban areas. Usually, vulnerability studies include the construction of aggregate (sub-) indices and the subsequent mapping of indices across an area of interest. Vulnerability studies show a couple of advantages: they are great communication tools, can inform a wider general debate about environmental issues, and can help allocating and efficiently targeting scarce resources for adaptation policy and planning. However, they also have a number of challenges: Vulnerability assessments are constructed on the basis of a wide range of methodologies and there is no single framework or methodology that has proven to serve best in certain environments, indicators vary highly according to the spatial scale used, different variables and metrics produce different results, and aggregate or composite vulnerability indicators that are mapped easily distort or bias the picture of vulnerability as they hide the underlying causes of vulnerability and level out conflicting reasons of vulnerability in space. So, there is urgent need to further develop the methodology of vulnerability studies towards a common framework, which is one reason of the paper. We introduce a social vulnerability approach, which is compared with other approaches of bio-physical or sectoral vulnerability studies relatively developed in terms of a common methodology for index construction, guidelines for mapping, assessment of sensitivity, and verification of variables. Two approaches are commonly pursued in the literature. The first one is an additive approach, in which all potentially influential variables are weighted according to their importance for the vulnerability aspect, and then added to form a composite vulnerability index per unit area. The second approach includes variable reduction, mostly Principal Component Analysis (PCA) that reduces the number of variables that are interrelated into a smaller number of less correlating components, which are also added to form a composite index. We test these two approaches of constructing indices on the area of New York City as well as two different metrics of variables used as input and compare the outcome for the 5 boroughs of NY. Our analysis yields that the mapping exercise yields particularly different results in the outer regions and parts of the boroughs, such as Outer Queens and Staten Island. However, some of these parts, particularly the coastal areas receive the highest attention in the current adaptation policy. We imply from this that the current adaptation policy and practice in NY might need to be discussed, as these outer urban areas show relatively low social vulnerability as compared with the more central parts, i.e. the high dense areas of Manhattan, Central Brooklyn, Central Queens and the Southern Bronx. The inner urban parts receive lesser adaptation attention, but bear a higher risk of damage in case of hazards in those areas. This is conceivable, e.g., during large heatwaves, which would more affect more the inner and poorer parts of the city as compared with the outer urban areas. In light of the recent planning practice of NY one needs to question and discuss who in NY makes adaptation policy for whom, but the presented analyses points towards an under representation of the needs of the socially vulnerable population, such as the poor, the elderly, and ethnic minorities, in the current adaptation practice in New York City.Keywords: vulnerability mapping, social vulnerability, additive approach, Principal Component Analysis (PCA), New York City, United States, adaptation, social sensitivity
Procedia PDF Downloads 395