Search results for: Signal Processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5014

Search results for: Signal Processing

2254 Microwave Sintering and Its Application on Cemented Carbides

Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi

Abstract:

Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.

Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties

Procedia PDF Downloads 597
2253 Physical Characteristics of Cookies Enriched with Microencapsulated Cherry Pomace Extract

Authors: Jovana Petrović, Ivana Lončarević, Vesna Tumbas Šaponjac, Biljana Pajin, Danica Zarić

Abstract:

Pomace, a by-product from fruit processing industry is the potential source of valuable bioactive. Cookies are popular, ready to eat and low price foods; therefore, enrichment of these products is of great importance. In this work, bioactive compounds extracted from cherry pomace, encapsulated in soy and whey proteins, have been incorporated in cookies, replacing 10 (SP10 and WP10) and 15% of wheat flour (SP15 and WP15). Cookie geometry (diameter (D), thickness (T) and spread ratio (D/T)), cookie weight, cookie hardness and cookie surface colour were measured. Sensory characteristics are also examined. The results show that encapsulated cherry pomace bioactives have positively influenced the cookie mass. Diameter, redness (a* value) and cookie hardness increased. Sensory evaluation of cookies, revealed that up to 15% substitution of wheat flour with WP encapsulate produced acceptable cookies similar to the control (100% wheat flour) cookies.

Keywords: cherry pomace, polyphenols, microencapsulation, cookies, physical characteristics

Procedia PDF Downloads 470
2252 Analyze the Effect of TETRA, Terrestrial Trunked Radio, Signal on the Health of People Working in the Gas Refinery

Authors: Mohammad Bagher Heidari, Hefzollah Mohammadian

Abstract:

TETRA (Terrestrial Trunked Radio) is a digital radio communication standard, which has been implemented in several different parts of the gas refinery ninth (phase 12th) by South Pars Gas Complex. Studies on possible impacts on the users' health considering different exposure conditions are missing. Objectives: To investigate possible acute effects of electromagnetic fields (EMF) of two different levels of TETRA hand-held transmitter signals on cognitive function and well-being in healthy young males. Methods: In the present double-blind cross-over study possible effects of short-term (2.5 h) EMF exposure of handset-like signals of TETRA (450 - 470 MHz) were studied in 30 healthy male participants (mean ± SD: 25.4 ±2.6 years). Individuals were tested on nine study days, on which they were exposed to three different exposure conditions (Sham, TETRA 1.5 W/kg and TETRA 10.0 W/kg) in a randomly assigned and balanced order. Participants were tested in the afternoon at a fixed timeframe. Results: Attention remained unchanged in two out of three tasks. In the working memory, significant changes were observed in two out of four subtasks. Significant results were found in 5 out of 35 tested parameters, four of them led to an improvement in performance. Mood, well-being and subjective somatic complaints were not affected by TETRA exposure. Conclusions: The results of the present study do not indicate a negative impact of a short-term EMF- effect of TETRA on cognitive function and well-being in healthy young men.

Keywords: TETRA (terrestrial trunked radio), electromagnetic fields (EMF), mobile telecommunication health research (MTHR), antenna

Procedia PDF Downloads 297
2251 Influence of Laser Excitation on SERS of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.

Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)

Procedia PDF Downloads 333
2250 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure

Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru

Abstract:

On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.

Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response

Procedia PDF Downloads 319
2249 Effects of Different Processing Methods on Composition, Physicochemical and Morphological Properties of MR263 Rice Flour

Authors: R. Asmeda, A. Noorlaila, M. H. Norziah

Abstract:

This research work was conducted to investigate the effects of different grinding techniques during the milling process of rice grains on physicochemical characteristics of rice flour produced. Dry grinding, semi-wet grinding, and wet grinding were employed to produce the rice flour. The results indicated that different grinding methods significantly (p ≤ 0.05) affected physicochemical and functional properties of starch except for the carbohydrate content, x-ray diffraction pattern and breakdown viscosity. Dry grinding technique caused highest percentage of starch damage compared to semi-wet and wet grinding. Protein, fat and ash content were highest in rice flour obtained by dry grinding. It was found that wet grinding produce flour with smallest average particle size (8.52 µm), resulting in highest process yield (73.14%). Pasting profiles revealed that dry grinding produce rice flour with significantly lowest pasting temperature and highest setback viscosity.

Keywords: average particle size, grinding techniques, physicochemical characteristics, rice flour

Procedia PDF Downloads 191
2248 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 149
2247 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications

Authors: Mohamed Achehboune, Mohammed Khenfouch, Issam Boukhoubza, Bakang Mothudi, Izeddine Zorkani, Anouar Jorio

Abstract:

Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.

Keywords: green synthesis, hafnium-doped-zinc oxide, nanostructures, optoelectronic

Procedia PDF Downloads 270
2246 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 300
2245 Using the M-Learning to Support Learning of the Concept of the Derivative

Authors: Elena F. Ruiz, Marina Vicario, Chadwick Carreto, Rubén Peredo

Abstract:

One of the main obstacles in Mexico’s engineering programs is math comprehension, especially in the Derivative concept. Due to this, we present a study case that relates Mobile Computing and Classroom Learning in the “Escuela Superior de Cómputo”, based on the Educational model of the Instituto Politécnico Nacional (competence based work and problem solutions) in which we propose apps and activities to teach the concept of the Derivative. M- Learning is emphasized as one of its lines, as the objective is the use of mobile devices running an app that uses its components such as sensors, screen, camera and processing power in classroom work. In this paper, we employed Augmented Reality (ARRoC), based on the good results this technology has had in the field of learning. This proposal was developed using a qualitative research methodology supported by quantitative research. The methodological instruments used on this proposal are: observation, questionnaires, interviews and evaluations. We obtained positive results with a 40% increase using M-Learning, from the 20% increase using traditional means.

Keywords: augmented reality, classroom learning, educational research, mobile computing

Procedia PDF Downloads 360
2244 Review of the Software Used for 3D Volumetric Reconstruction of the Liver

Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta

Abstract:

In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.

Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction

Procedia PDF Downloads 290
2243 Effect of Kenaf Fibres on Starch-Grafted-Polypropylene Biopolymer Properties

Authors: Amel Hamma, Allesandro Pegoretti

Abstract:

Kenaf fibres, with two aspect ratios, were melt compounded with two types of biopolymers named starch grafted polypropylene, and then blends compression molded to form plates of 1 mm thick. Results showed that processing induced variation of fibres length which is quantified by optical microscopy observations. Young modulus, stress at break and impact resistance values of starch-grafted-polypropylenes were remarkably improved by kenaf fibres for both matrixes and demonstrated best values when G906PJ were used as matrix. These results attest the good interfacial bonding between the matrix and fibres even in the absence of any interfacial modification. Vicat Softening Point and storage modules were also improved due to the reinforcing effect of fibres. Moreover, short-term tensile creep tests have proven that kenaf fibres remarkably improve the creep stability of composites. The creep behavior of the investigated materials was successfully modeled by the four parameters Burgers model.

Keywords: creep behaviour, kenaf fibres, mechanical properties, starch-grafted-polypropylene

Procedia PDF Downloads 232
2242 Reproducibility of Dopamine Transporter Density Measured with I-123-N-ω-Fluoropropyl-2β-Carbomethoxy-3β-(4-Iodophenyl)Nortropane SPECT in Phantom Studies and Parkinson’s Disease Patients

Authors: Yasuyuki Takahashi, Genta Hoshi, Kyoko Saito

Abstract:

Objectives: The objective of this study was to evaluate the reproducibility of I-123-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4- iodophenyl) nortropane (I-123 FP-CIT) SPECT by using specific binding ratio (SBR) in phantom studies and Parkinson’s Disease (PD) patients. Methods: We made striatum phantom originally and confirmed reproducibility. The phantom studies changed head position and accumulation of FP-CIT, each. And image processing confirms influence on SBR by 30 cases. 30 PD received a SPECT for 3 hours post injection of I-123 FP-CIT 167MBq. Results: SBR decreased in rotatory direction by the patient position by the phantom studies. And, SBR improved the influence after the attenuation and the scatter correction in the cases (y=0.99x+0.57 r2=0.83). However, Stage II recognized dispersion in SBR by low accumulation. Conclusion: Than the phantom studies that assumed the normal cases, the SPECT image after the attenuation and scatter correction had better reproducibility.

Keywords: 123I-FP-CIT, specific binding ratio, Parkinson’s disease

Procedia PDF Downloads 429
2241 Security Analysis of Mod. S Transponder Technology and Attack Examples

Authors: M. Rutkowski, J. Cwiklak, M. Grzegorzewski, M. Adamski

Abstract:

All class A Airplanes have to be equipped with Mod. S transponder for ATC surveillance purposes. This technology was designed to provide a robust and dependable solution to localize, identify and exchange data with the airplane. The purpose of this paper is to analyze potential hazards that are a result of lack of any security or encryption on a design level. Secondary Surveillance Radars rely on an active response from an airplane. SSR radar installation is broadcasting a directional interrogation signal to the planes in range on 1030MHz frequency with DPSK modulation. If the interrogation is correctly received by the transponder located on the plane, a proper answer is sent on 1090MHz with PPM modulation containing plane’s SQUAWK, barometric altitude, GPS coordinates and 24bit unique address code. This technology does not use any kind of encryption. All of the specifications from the previous chapter can be found easily on the internet. Since there is no encryption or security measure to ensure the credibility of the sender and message, it is highly hazardous to use such technology to ensure the safety of the air traffic. The only thing that identifies the airplane is the 24-bit unique address. Most of the planes have been sniffed by aviation enthusiasts and cataloged in web databases. In the moment of writing this article, The PoFung Technologies has announced that they are planning to release all band SDR transceiver – this device would be more than enough to build your own Mod. S Transponder. With fake transponder, a potential terrorist can identify as a different airplane. By replacing the transponder in a poorly controlled airspace, hijackers can enter another airspace identifying themselves as another plane and land in the desired area.

Keywords: flight safety, hijack, mod S transponder, security analysis

Procedia PDF Downloads 295
2240 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 215
2239 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 194
2238 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 113
2237 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
2236 Improving the Security of Internet of Things Using Encryption Algorithms

Authors: Amirhossein Safi

Abstract:

Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.

Keywords: internet of things, security, hybrid algorithm, privacy

Procedia PDF Downloads 468
2235 Overview of Resources and Tools to Bridge Language Barriers Provided by the European Union

Authors: Barbara Heinisch, Mikael Snaprud

Abstract:

A common, well understood language is crucial in critical situations like landing a plane. For e-Government solutions, a clear and common language is needed to allow users to successfully complete transactions online. Misunderstandings here may not risk a safe landing but can cause delays, resubmissions and drive costs. This holds also true for higher education, where misunderstandings can also arise due to inconsistent use of terminology. Thus, language barriers are a societal challenge that needs to be tackled. The major means to bridge language barriers is translation. However, achieving high-quality translation and making texts understandable and accessible require certain framework conditions. Therefore, the EU and individual projects take (strategic) actions. These actions include the identification, collection, processing, re-use and development of language resources. These language resources may be used for the development of machine translation systems and the provision of (public) services including higher education. This paper outlines some of the existing resources and indicate directions for further development to increase the quality and usage of these resources.

Keywords: language resources, machine translation, terminology, translation

Procedia PDF Downloads 319
2234 Would Intra-Individual Variability in Attention to Be the Indicator of Impending the Senior Adults at Risk of Cognitive Decline: Evidence from Attention Network Test(ANT)

Authors: Hanna Lu, Sandra S. M. Chan, Linda C. W. Lam

Abstract:

Objectives: Intra-individual variability (IIV) has been considered as a biomarker of healthy ageing. However, the composite role of IIV in attention, as an impending indicator for neurocognitive disorders warrants further exploration. This study aims to investigate the IIV, as well as their relationships with attention network functions in adults with neurocognitive disorders (NCD). Methods: 36adults with NCD due to Alzheimer’s disease(NCD-AD), 31adults with NCD due to vascular disease (NCD-vascular), and 137 healthy controls were recruited. Intraindividual standard deviations (iSD) and intraindividual coefficient of variation of reaction time (ICV-RT) were used to evaluate the IIV. Results: NCD groups showed greater IIV (iSD: F= 11.803, p < 0.001; ICV-RT:F= 9.07, p < 0.001). In ROC analyses, the indices of IIV could differentiateNCD-AD (iSD: AUC value = 0.687, p= 0.001; ICV-RT: AUC value = 0.677, p= 0.001) and NCD-vascular (iSD: AUC value = 0.631, p= 0.023;ICV-RT: AUC value = 0.615, p= 0.045) from healthy controls. Moreover, the processing speed could distinguish NCD-AD from NCD-vascular (AUC value = 0.647, p= 0.040). Discussion: Intra-individual variability in attention provides a stable measure of cognitive performance, and seems to help distinguish the senior adults with different cognitive status.

Keywords: intra-individual variability, attention network, neurocognitive disorders, ageing

Procedia PDF Downloads 475
2233 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity

Procedia PDF Downloads 135
2232 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms

Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli

Abstract:

In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.

Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding

Procedia PDF Downloads 286
2231 The Signaling Power of ESG Accounting in Sub-Sahara Africa: A Dynamic Model Approach

Authors: Haruna Maama

Abstract:

Environmental, social and governance (ESG) reporting is gaining considerable attention despite being voluntary. Meanwhile, it consumes resources to provide ESG reporting, raising a question of its value relevance. The study examined the impact of ESG reporting on the market value of listed firms in SSA. The annual and integrated reports of 276 listed sub-Sahara Africa (SSA) firms. The integrated reporting scores of the firm were analysed using a content analysis method. A multiple regression estimation technique using a GMM approach was employed for the analysis. The results revealed that ESG has a positive relationship with firms’ market value, suggesting that investors are interested in the ESG information disclosure of firms in SSA. This suggests that extensive ESG disclosures are attempts by firms to obtain the approval of powerful social, political and environmental stakeholders, especially institutional investors. Furthermore, the market value analysis evidence is consistent with signalling theory, which postulates that firms provide integrated reports as a signal to influence the behaviour of stakeholders. This finding reflects the value placed on investors' social, environmental and governance disclosures, which affirms the views that conventional investors would care about the social, environmental and governance issues of their potential or existing investee firms. Overall, the evidence is consistent with the prediction of signalling theory. In the context of this theory, integrated reporting is seen as part of firms' overall competitive strategy to influence investors' behaviour. The findings of this study make unique contributions to knowledge and practice in corporate reporting.

Keywords: environmental accounting, ESG accounting, signalling theory, sustainability reporting, sub-saharan Africa

Procedia PDF Downloads 77
2230 Efficient Layout-Aware Pretraining for Multimodal Form Understanding

Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose

Abstract:

Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.

Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention

Procedia PDF Downloads 148
2229 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite

Authors: Ganesh V., Asit Kumar Khanra

Abstract:

An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.

Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy

Procedia PDF Downloads 20
2228 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 272
2227 5-HT2CR Deficiency Causes Affective Disorders by Impairing E/I Balance through Augmenting Hippocampal nNOS-CAPON Coupling

Authors: Hu-Jiang Shi, Li-Juan Zhu

Abstract:

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in affective behaviors is a topic of debate, and the underlying mechanisms remain largely unclear. Here, we elucidate that the interaction between hippocampal neuronal nitric oxide synthase (nNOS) and carboxy-terminal PDZ ligand of nNOS (CAPON) contributes to the disruption of hippocampal excitation-inhibition (E/I) balance, which is responsible for the anxiety- and depressive-like behaviors caused by chronic stress-related 5-HT2CR signaling deficiency. In detail, activation or inhibition of 5-HT2CR by CP809101 or SB242084 modulates nNOS-CAPON interaction by influencing intracellular Ca²⁺ release. Notably, the dissociation of nNOS-CAPON abolishes SB242084-induced anxiety- and depressive-like behaviors, as well as the reduction in extracellular signal-regulated kinase (ERK)/cAMP-response element binding protein (CREB)/synapsin signaling and SNARE complex assembly. Furthermore, nNOS-CAPON blockers restore the impairments caused by SB242084, including the reduction in SNARE assembly-mediated γ-aminobutyric acid (GABA) vesicle release and a consequent shift of the E/I balance toward excitation in CA3 pyramidal neurons. Conclusively, our findings disclose the regulatory role of 5-HT2CR in anxiety- and depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

Keywords: 5-HT2CR, anxiety, depression, nNOS-CAPON coupling, excitation-inhibition balance, neurotransmitter release

Procedia PDF Downloads 65
2226 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 139
2225 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend

Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono

Abstract:

Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.

Keywords: communication technology between appliances, demand response, load monitoring, smart appliances, smart grid

Procedia PDF Downloads 613