Search results for: simulation in MATLAB
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5492

Search results for: simulation in MATLAB

2762 Mechanical Properties of Biological Tissues

Authors: Young June Yoon

Abstract:

We will present four different topics in estimating the mechanical properties of biological tissues. First we elucidate the viscoelastic behavior of collagen molecules whose diameter is a couple of nanometers. By using the molecular dynamics simulation, we observed the viscoelastic behavior in different pulling velocity. Second, the protein layer, so called ‘sheath’ in enamel microstructure reduces the stress concentration in enamel minerals. We examined the result by using the finite element methods. Third, the anisotropic elastic constants of dentin are estimated by micromechanical analysis and estimated results are close to the experimentally measured data. Last, new formulation between the fabric tensor and the wave velocity is established for calcaneus by employing the poroelasticity. This formulation can be simply used for future experiments.

Keywords: tissues, mechanics, mechanical properties, wave propagation

Procedia PDF Downloads 364
2761 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 496
2760 Efficient Broadcasting in Wireless Sensor Networks

Authors: Min Kyung An, Hyuk Cho

Abstract:

In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.

Keywords: broadcast, collision-free, directional antenna, approximation, wireless sensor networks

Procedia PDF Downloads 341
2759 Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the microchannel of a optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of microchannels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors

Procedia PDF Downloads 541
2758 Numerical Model Validation Using Durbin Method

Authors: H. Al-Hajeri

Abstract:

The computation of the effectiveness of turbulence enhancement surface features, such as ribs as means of promoting mixing and hence heat transfer, has attracted the continued attention of the engineering community. In this study, the simulation of a three-dimensional cooling passage is carried out employing a number of turbulence models including Durbin model. The cooling passage consists of a square section duct whose upper and lower surfaces feature staggered cuboid ribs. The main objective of this paper is to provide comparisons of the performance of the v2-f model against other established turbulence models as implemented in the commercial CFD code Ansys Fluent. The present study demonstrates that the v2-f model can successfully capture the isothermal air flow phenomena in flow over obstacles.

Keywords: CFD, cooling passage, Durbin model, turbulence model

Procedia PDF Downloads 500
2757 The Effect of Water Droplets Size in Fire Fighting Systems

Authors: Tassadit Tabouche

Abstract:

Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.

Keywords: droplets, water spray, water droplets size, 3D

Procedia PDF Downloads 524
2756 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming

Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero

Abstract:

Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.

Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up

Procedia PDF Downloads 238
2755 Power-Aware Adaptive Coverage Control with Consensus Protocol

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.

Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination

Procedia PDF Downloads 349
2754 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 411
2753 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method

Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn

Abstract:

Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.

Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system

Procedia PDF Downloads 125
2752 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct

Authors: Nur Irmawati, H. A. Mohammed

Abstract:

In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.

Keywords: numerical simulation, mixed convection, horizontal rectangular duct, nanofluids

Procedia PDF Downloads 369
2751 Single-Element Simulations of Wood Material in LS-DYNA

Authors: Ren Zuo Wang

Abstract:

In this paper, in order to investigate the behavior of the wood structure, the non-linearity of wood material model in LS-DYNA is adopted. It is difficult and less efficient to conduct the experiment of the ancient wood structure, hence LS-DYNA software can be used to simulate nonlinear responses of ancient wood structure. In LS-DYNA software, there is material model called *MAT_WOOD or *MAT_143. This model is to simulate a single-element response of the wood subjected to tension and compression under the parallel and the perpendicular material directions. Comparing with the exact solution and numerical simulations results using LS-DYNA, it demonstrates the accuracy and the efficiency of the proposed simulation method.

Keywords: LS-DYNA, wood structure, single-element simulations, MAT_143

Procedia PDF Downloads 631
2750 Modeling and Simulation for Infection Processes of Bird Flu within a Poultry Farm

Authors: Tertia Delia Nova, Masaji Watanabge

Abstract:

Infection of bird flu within a poultry farm involves hosts, virus, and medium. Intrusion of bird flu into a poultry farm divides the population into two groups; healthy and susceptible chickens and infected chickens. A healthy and susceptible bird is infected to become an infected bird. Bird flu viruses spread among chickens through medium such as air and droppings, and increase in hosts. A model for an infection process of bird flu within a poultry farm is described, numerical techniques are illustrated, and numerical results are introduced.

Keywords: bird flu, poultry farm, model for an infection process, flu viruses

Procedia PDF Downloads 250
2749 Road Traffic Noise Mapping for Riyadh City Using GIS and Lima

Authors: Khalid A. Alsaif, Mosaad A. Foda

Abstract:

The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB.

Keywords: noise pollution, road traffic noise, LimA predictor, GIS

Procedia PDF Downloads 400
2748 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.

Keywords: power quality, direct power control, power ripple, switching table, unity power factor

Procedia PDF Downloads 314
2747 Numerical Simulation of Truck Collision with Road Blocker

Authors: Engin Metin Kaplan, Kemal Yaman

Abstract:

In this study, the crash of a medium heavy vehicle onto a designed Road blocker (vehicle barrier) is studied numerically. Structural integrity of the Road blocker is studied by nonlinear dynamic methods under the loading conditions which are defined in the standards. NASTRAN® and LS-DYNA® which are commercial software are used to solve the problem. Outer geometry determination, alignment of the inner part and material properties of the road blocker are studied linearly to yield design parameters. Best design parameters are determined to achieve the most structurally optimized road blocker. Strain and stress values of the vehicle barrier are obtained by solving the partial differential equations.

Keywords: vehicle barrier, truck collision, road blocker, crash analysis

Procedia PDF Downloads 472
2746 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators

Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean

Abstract:

In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.

Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram

Procedia PDF Downloads 425
2745 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases

Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim

Abstract:

This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.

Keywords: Carbon monoxide, Efficiency, Emissions, Gas Turbine, Nox, UHC

Procedia PDF Downloads 428
2744 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 113
2743 Control Law Design of a Wheeled Robot Mobile

Authors: Ghania Zidani, Said Drid, Larbi Chrifi-Alaoui, Abdeslam Benmakhlouf, Souad Chaouch

Abstract:

In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking.

Keywords: Backstepping control, kinematic and dynamic controllers, Lyapunov methods, nonlinear control systems, Wheeled Mobile Robot (WMR).

Procedia PDF Downloads 433
2742 Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material

Authors: H. M. Alfrihidi, H.A. Albarakaty

Abstract:

Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF.

Keywords: flattening filter free, monte carlo, radiotherapy, surface dose

Procedia PDF Downloads 67
2741 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate

Authors: Chia-Ling Li

Abstract:

The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.

Keywords: economic analysis, hydrogenation, non-phthalate, process simulation

Procedia PDF Downloads 268
2740 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 236
2739 Thermal Radiation and Noise Safety Assessment of an Offshore Platform Flare Stack as Sudden Emergency Relief Takes Place

Authors: Lai Xuejiang, Huang Li, Yang Yi

Abstract:

To study the potential hazards of the sudden emergency relief of flare stack, the thermal radiation and noise calculation of flare stack is carried out by using Flaresim program 2.0. Thermal radiation and noise analysis should be considered as the sudden emergency relief takes place. According to the Flaresim software simulation results, the thermal radiation and noise meet the requirement.

Keywords: flare stack, thermal radiation, safety assessment, noise

Procedia PDF Downloads 350
2738 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

Authors: Markus Rütten, Olaf Wünsch

Abstract:

Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.

Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding

Procedia PDF Downloads 295
2737 Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB)

Authors: Liyana Zahid, Mohd Fareq Abd Malek, Ee Meng Cheng, Wei Wen Liu, Yeng Seng Lee, Muhammad Nadeem Iqbal, Fwen Hoon Wee

Abstract:

One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared.

Keywords: microwave absorber, reflection loss, sugarcane bagasse (SCB), X-Band

Procedia PDF Downloads 344
2736 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve

Procedia PDF Downloads 433
2735 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)

Authors: Vassilios Moussas, Dimos N. Pantazis, Panagioths Stratakis

Abstract:

The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.

Keywords: coastal transport, modeling, optimization

Procedia PDF Downloads 496
2734 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors

Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller

Abstract:

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.

Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault

Procedia PDF Downloads 47
2733 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 54