Search results for: multi-phase induction machine
914 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 112913 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words
Authors: Angelis P. Barlampas
Abstract:
Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging
Procedia PDF Downloads 51912 Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis
Authors: Tugrul Torun, Ihsan A. Yuksel, Si̇nem On Aktan, Taha K. Vezi̇roglu
Abstract:
In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated.Keywords: coordinate measurement, CMM, comparison, uncertainty
Procedia PDF Downloads 211911 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement
Authors: Rhadinia Tayag-Relanes, Felina C. Young
Abstract:
This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.Keywords: continuous improvement, process, operations, PDCA
Procedia PDF Downloads 72910 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 99909 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 40908 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 272907 Robot Navigation and Localization Based on the Rat’s Brain Signals
Authors: Endri Rama, Genci Capi, Shigenori Kawahara
Abstract:
The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.Keywords: brain-machine interface, decision-making, mobile robot, neural network
Procedia PDF Downloads 297906 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades
Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo
Abstract:
This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping
Procedia PDF Downloads 112905 Building Safety Through Real-time Design Fire Protection Systems
Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim
Abstract:
When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.Keywords: prevention level, building information modeling, quality management system, simulated reality
Procedia PDF Downloads 69904 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 304903 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 130902 Simulation of Particle Damping in Boring Tool Using Combined Particles
Authors: S. Chockalingam, U. Natarajan, D. M. Santhoshsarang
Abstract:
Particle damping is a promising vibration attenuating technique in boring tool than other type of damping with minimal effect on the strength, rigidity and stiffness ratio of the machine tool structure. Due to the cantilever nature of boring tool holder in operations, it suffers chatter when the slenderness ratio of the tool gets increased. In this study, Copper-Stainless steel (SS) particles were packed inside the boring tool which acts as a damper. Damper suppresses chatter generated during machining and also improves the machining efficiency of the tool with better slenderness ratio. In the first approach of particle damping, combined Cu-SS particles were packed inside the vibrating tool, whereas Copper and Stainless steel particles were selected separately and packed inside another tool and their effectiveness was analysed in this simulation. This study reveals that the efficiency of finite element simulation of the boring tools when equipped with particles such as copper, stainless steel and a combination of both. In this study, the newly modified boring tool holder with particle damping was simulated using ANSYS12.0 with and without particles. The aim of this study is to enhance the structural rigidity through particle damping thus avoiding the occurrence of resonance in the boring tool during machining.Keywords: boring bar, copper-stainless steel, chatter, particle damping
Procedia PDF Downloads 461901 Supervisor Controller-Based Colored Petri Nets for Deadlock Control and Machine Failures in Automated Manufacturing Systems
Authors: Husam Kaid, Abdulrahman Al-Ahmari, Zhiwu Li
Abstract:
This paper develops a robust deadlock control technique for shared and unreliable resources in automated manufacturing systems (AMSs) based on structural analysis and colored Petri nets, which consists of three steps. The first step involves using strict minimal siphon control to create a live (deadlock-free) system that does not consider resource failure. The second step uses an approach based on colored Petri net, in which all monitors designed in the first step are merged into a single monitor. The third step addresses the deadlock control problems caused by resource failures. For all resource failures in the Petri net model a common recovery subnet based on colored petri net is proposed. The common recovery subnet is added to the obtained system at the second step to make the system reliable. The proposed approach is evaluated using an AMS from the literature. The results show that the proposed approach can be applied to an unreliable complex Petri net model, has a simpler structure and less computational complexity, and can obtain one common recovery subnet to model all resource failures.Keywords: automated manufacturing system, colored Petri net, deadlocks, siphon
Procedia PDF Downloads 129900 Exploratory Study of the Influencing Factors for Hotels' Competitors
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling
Procedia PDF Downloads 119899 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 20898 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 106897 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer
Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay
Abstract:
Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.Keywords: cancer, mycobacterium, immunity, immunotherapy.
Procedia PDF Downloads 249896 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 174895 Control Flow around NACA 4415 Airfoil Using Slot and Injection
Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine
Abstract:
One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficientKeywords: CFD, control flow, lift, slot
Procedia PDF Downloads 197894 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 75893 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes
Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi
Abstract:
Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation
Procedia PDF Downloads 150892 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 477891 The Reflection Framework to Enhance the User Experience for Cultural Heritage Spaces’ Websites in Post-Pandemic Times
Authors: Duyen Lam, Thuong Hoang, Atul Sajjanhar, Feifei Chen
Abstract:
With the emerging interactive technology applications helping users connect progressively with cultural artefacts in new approaches, the cultural heritage sector gains significantly. The interactive apps’ issues can be tested via several techniques, including usability surveys and usability evaluations. The severe usability problems for museums’ interactive technologies commonly involve interactions, control, and navigation processes. This study confirms the low quality of being immersive for audio guides in navigating the exhibition and involving experience in the virtual environment, which are the most vital features of new interactive technologies such as AR and VR. In addition, our usability surveys and heuristic evaluations disclosed many usability issues of these interactive technologies relating to interaction functions. Additionally, we use the Wayback Machine to examine what interactive apps/technologies were deployed on these websites during the physical visits limited due to the COVID-19 pandemic lockdown. Based on those inputs, we propose the reflection framework to enhance the UX in the cultural heritage domain with detailed guidelines.Keywords: framework, user experience, cultural heritage, interactive technology, museum, COVID-19 pandemic, usability survey, heuristic evaluation, guidelines
Procedia PDF Downloads 68890 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale
Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya
Abstract:
Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS
Procedia PDF Downloads 201889 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction
Authors: Priyadarsini Samal, Rajesh Singla
Abstract:
Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.Keywords: brain computer interface, electroencephalogram, regression model, stress, word search
Procedia PDF Downloads 187888 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 128887 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 150886 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging
Authors: Jiangbo Li, Wenqian Huang
Abstract:
Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging
Procedia PDF Downloads 299885 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment
Authors: Ahmad Seiar Yasser
Abstract:
Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.Keywords: sedimentary, H2S, iron, iron hydroxide
Procedia PDF Downloads 163