Search results for: cognitive learning
5859 Accomplishing Mathematical Tasks in Bilingual Primary Classrooms
Authors: Gabriela Steffen
Abstract:
Learning in a bilingual classroom not only implies learning in two languages or in an L2, it also means learning content subjects through the means of bilingual or plurilingual resources, which is of a qualitatively different nature than ‘monolingual’ learning. These resources form elements of a didactics of plurilingualism, aiming not only at the development of a plurilingual competence, but also at drawing on plurilingual resources for nonlinguistic subject learning. Applying a didactics of plurilingualism allows for taking account of the specificities of bilingual content subject learning in bilingual education classrooms. Bilingual education is used here as an umbrella term for different programs, such as bilingual education, immersion, CLIL, bilingual modules in which one or several non-linguistic subjects are taught partly or completely in an L2. This paper aims at discussing first results of a study on pupil group work in bilingual classrooms in several Swiss primary schools. For instance, it analyses two bilingual classes in two primary schools in a French-speaking region of Switzerland that follows a part of their school program through German in addition to French, the language of instruction in this region. More precisely, it analyses videotaped classroom interaction and in situ classroom practices of pupil group work in a mathematics lessons. The ethnographic observation of pupils’ group work and the analysis of their interaction (analytical tools of conversational analysis, discourse analysis and plurilingual interaction) enhance the description of whole-class interaction done in the same (and several other) classes. While the latter are teacher-student interactions, the former are student-student interactions giving more space to and insight into pupils’ talk. This study aims at the description of the linguistic and multimodal resources (in German L2 and/or French L1) pupils mobilize while carrying out a mathematical task. The analysis shows that the accomplishment of the mathematical task takes place in a bilingual mode, whether the whole-class interactions are conducted rather in a bilingual (German L2-French L1) or a monolingual mode in L2 (German). The pupils make plenty of use of German L2 in a setting that lends itself to use French L1 (peer groups with French as a dominant language, in absence of the teacher and a task with a mathematical aim). They switch from French to German and back ‘naturally’, which is regular for bilingual speakers. Their linguistic resources in German L2 are not sufficient to allow them to (inter-)act well enough to accomplish the task entirely in German L2, despite their efforts to do so. However, this does not stop them from carrying out the task in mathematics adequately, which is the main objective, by drawing on the bilingual resources at hand.Keywords: bilingual content subject learning, bilingual primary education, bilingual pupil group work, bilingual teaching/learning resources, didactics of plurilingualism
Procedia PDF Downloads 1625858 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 545857 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 795856 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1425855 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 1225854 The Correlation between Eye Movements, Attentional Shifting, and Driving Simulator Performance among Adolescents with Attention Deficit Hyperactivity Disorder
Authors: Navah Z. Ratzon, Anat Keren, Shlomit Y. Greenberg
Abstract:
Car accidents are a problem worldwide. Adolescents’ involvement in car accidents is higher in comparison to the overall driving population. Researchers estimate the risk of accidents among adolescents with symptoms of attention-deficit/hyperactivity disorder (ADHD) to be 1.2 to 4 times higher than that of their peers. Individuals with ADHD exhibit unique patterns of eye movements and attentional shifts that play an important role in driving. In addition, deficiencies in cognitive and executive functions among adolescents with ADHD is likely to put them at greater risk for car accidents. Fifteen adolescents with ADHD and 17 matched controls participated in the study. Individuals from both groups attended local public schools and did not have a driver’s license. Participants’ mean age was 16.1 (SD=.23). As part of the experiment, they all completed a driving simulation session, while their eye movements were monitored. Data were recorded by an eye tracker: The entire driving session was recorded, registering the tester’s exact gaze position directly on the screen. Eye movements and simulator data were analyzed using Matlab (Mathworks, USA). Participants’ cognitive and metacognitive abilities were evaluated as well. No correlation was found between saccade properties, regions of interest, and simulator performance in either group, although participants with ADHD allocated more visual scan time (25%, SD = .13%) to a smaller segment of dashboard area, whereas controls scanned the monitor more evenly (15%, SD = .05%). The visual scan pattern found among participants with ADHD indicates a distinct pattern of engagement-disengagement of spatial attention compared to that of non-ADHD participants as well as lower attention flexibility, which likely affects driving. Additionally the lower the results on the cognitive tests, the worse driving performance was. None of the participants had prior driving experience, yet participants with ADHD distinctly demonstrated difficulties in scanning their surroundings, which may impair driving. This stresses the need to consider intervention programs, before driving lessons begin, to help adolescents with ADHD acquire proper driving habits, avoid typical driving errors, and achieve safer driving.Keywords: ADHD, attentional shifting, driving simulator, eye movements
Procedia PDF Downloads 3295853 Hear My Voice: The Educational Experiences of Disabled Students
Authors: Karl Baker-Green, Ian Woolsey
Abstract:
Historically, a variety of methods have been used to access the student voice within higher education, including module evaluations and informal classroom feedback. However, currently, the views articulated in student-staff-committee meetings bear the most weight and can therefore have the most significant impact on departmental policy. Arguably, these forums are exclusionary as several students, including those who experience severe anxiety, might feel unable to participate in this face-to-face (large) group activities. Similarly, students who declare a disability, but are not in possession of a learning contract, are more likely to withdraw from their studies than those whose additional needs have been formally recognised. It is also worth noting that whilst the number of disabled students in Higher Education has increased in recent years, the percentage of those who have been issued a learning contract has decreased. These issues foreground the need to explore the educational experiences of students with or without a learning contract in order to identify their respective aspirations and needs and therefore help shape education policy. This is in keeping with the ‘Nothing about us without us’, agenda, which recognises that disabled individuals are best placed to understand their own requirements and the most effective strategies to meet these.Keywords: education, student voice, student experience, student retention
Procedia PDF Downloads 945852 Educating Empathy: Combining Active Listening and Moral Discovery to Facilitate Prosocial Connection
Authors: Erika Price, Lisa Johnson
Abstract:
Cognitive and dispositional empathy is decreasing among students worldwide, particularly those at university. This paper looks at the effects of encouraging empathetic positioning in divisive topics by teaching listening skills and moral discovery to university students. Two groups of university students were given the assignment to interview individuals they disagreed with on social issues (e.g. abortion, gun control, legalization of drugs, involvement in Ukraine, etc.). One group completed the assignment with no other instruction. The second group completed the assignment after receiving instruction in active listening and Jonathan Haidt’s theory of moral foundations in politics. Results show that when students are given both active listening techniques and awareness of moral foundations, they are significantly more likely to have socially positive interactions with those they disagree with on issues as compared to those who listen passively to ideological opponents. As students interacted with those they disagreed with, they evidenced prosocial behaviors of acknowledgement, validation, and even commonalities with their opponents’ viewpoints, signifying a heartening trend of empathetic connection that is waning in students. The research suggests that empathy is a skill that can be nurtured by active listening but that it is more fully cultivated when paired with the concept of moral foundations underpinning political ideologies. These findings shed light on how to create more effective pedagogies for social and emotional learning, as well as inclusion.Keywords: empathy, listening skills, moral discovery, pedagogy, prosocial behavior
Procedia PDF Downloads 685851 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment
Authors: Mei-Hui Liu
Abstract:
This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience
Procedia PDF Downloads 2595850 Effect of Rehabilitation on Outcomes for Persons with Traumatic Brain Injury: Results from a Single Center
Authors: Savaş Karpuz, Sami Küçükşen
Abstract:
The aim of this study is to investigate the effectiveness of neurological rehabilitation in patients with traumatic brain injury. Participants were 45 consecutive adults with traumatic brain injury who were received the neurologic rehabilitation. Sociodemographic characteristics of the patients, the cause of the injury, the duration of the coma and posttraumatic amnesia, the length of stay in the other inpatient clinics before rehabilitation, the time between injury and admission to the rehabilitation clinic, and the length of stay in the rehabilitation clinic were recorded. The differences in functional status between admission and discharge were determined with Disability Rating Scale (DRS), Functional Independence Measure (FIM), and Functional Ambulation Scale (FAS) and levels of cognitive functioning determined with Ranchos Los Amigos Scale (RLAS). According to admission time, there was a significant improvement identified in functional status of patients who had been given the intensive in-hospital cognitive rehabilitation program. At discharge time, the statistically significant differences were obtained in DRS, FIM, FAS and RLAS scores according to admission time. Better improvement in functional status was detected in patients with lower scores in DRS, and higher scores FIM and RLAS scores at the entry time. The neurologic rehabilitation significantly affects the recovery of functional status after traumatic brain injury.Keywords: traumatic brain injury, rehabilitation, functional status, neurological
Procedia PDF Downloads 2295849 Teachers Handbook: A Key to Imparting Teaching in Multilingual Classrooms at Kalinga Institute of Social Sciences (KISS)
Authors: Sushree Sangita Mohanty
Abstract:
The pedagogic system, which is used to work with indigenous groups, who have equally different socio-economic, socio-cultural & multi-lingual conditions with differing cognitive capabilities, makes the education situation complex. As a result, educating the indigenous people became just the dissemination of facts and information, but advancement in knowledge and possibilities somewhere hides. This gap arises complexities due to the language barrier and the teachers from a conventional background of teaching practices are unable to understand or connect with the students in the schools. This paper presents the research work of the Mother Tongue Based Multilingual Education (MTB-MLE) project that has developed a creative pedagogic endeavor for the students of Kalinga Institute of Social Sciences (KISS) for facilitating Multilingual Education (MLE) teaching. KISS is a home for 25,000 indigenous children. The students enrolled here are from 62 different indigenous communities who speak around 24 different languages with geographical articulation. The book contents include concept, understanding languages, similitudes among languages, the need of mother tongue in teaching and learning, skill development (Listening-Speaking-Reading-Writing), teachers activities for teaching in multilingual schools, the process of teaching, training format of multilingual teaching and procedures for basic data collection regarding multilingual schools and classroom handle.Keywords: indigenous, multi-lingual, pedagogic, teachers, teaching practices
Procedia PDF Downloads 2895848 The Emotional Education in the Development of Intercultural Competences
Authors: Montserrrat Dopico Gonzalez, Ramon Lopez Facal
Abstract:
The development of a critical, open and plural citizenship constitutes one of the main challenges of the school institution in the present multicultural societies. Didactics in Social Sciences has conducted important contributions to the development of active methodologies to promote the development of the intercultural competencies of the student body. Research in intercultural education has demonstrated the efficiency of the cooperative learning techniques to improve the intercultural relations in the classroom. Our study proposes to check the effect that, concerning the development of intercultural competencies of the student body, the emotional education can have in the context of the use of active methodologies such as the learning by projects and the cooperative learning. To that purpose, a programme of intervention based on activities focussed on controversial issues related to cultural diversity has been implemented in several secondary schools. Through a methodology which combines intercultural competence scales with interviews and also with the analysis of the school body’s productions, the persistence of stereotypes against immigration and the efficacy of the introduction of emotional education elements in the development of intercultural competencies have both been observed.Keywords: active methodologies, didactics in social sciences, intercultural competences, intercultural education
Procedia PDF Downloads 1545847 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning
Authors: Christina Largent, Tazley Hobbs
Abstract:
Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent
Procedia PDF Downloads 1245846 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research
Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová
Abstract:
Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.Keywords: special elementary school, a mobile touch device, iPad, attention, Math Board
Procedia PDF Downloads 2545845 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 765844 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 885843 In vitro And in vivo Anticholinesterase Activity of the Volatile Oil of the Aerial Parts of Ocimum Basilicum L. and O. africanum Lour. Growing in Egypt
Authors: Mariane G. Tadros, Shahira M. Ezzat, Maha M. Salama, Mohamed A. Farag
Abstract:
In this study, the in vitro anticholinesterase activity of the volatile oils of both O. basilicum and O. africanum was investigated and both samples showed significant activity. As a result, the major constituents of the two oils were isolated using several column chromatography. Linalool, 1,8-cineol and eugenol were isolated from the volatile oil of O. basilicum and camphor was isolated from the volatile oil of O. africanum. The anticholinesterase activity of the isolated compounds were also evaluated where 1,8-cineol showed the highest inhibitory activity followed by camphor. To confirm these activities, learning and memory enhancing effects were tested in mice. Memory impairment was induced by scopolamine, a cholinergic muscarinic receptor antagonist. Anti-amnesic effects of both volatile oils and their terpenoids were investigated by the passive avoidance task in mice. We also examined their effects on brain acetylcholinesterase activity. Results showed that scopolamine-induced cognitive dysfunction was significantly attenuated by administration of the volatile oils and their terpenoids, eugenol and camphor, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that O. basilicum and O. africanum volatile oils can be good candidates for further studies on Alzheimer’s disease via their acetylcholinesterase inhibitory actions.Keywords: Ocimum baselicum, Ocimum africanum, GC/MS analysis, anticholinesterase
Procedia PDF Downloads 4555842 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3245841 On or Off-Line: Dilemmas in Using Online Teaching-Learning in In-Service Teacher Education
Authors: Orly Sela
Abstract:
The lecture discusses a Language Teaching program in a Teacher Education College in northern Israel. An on-line course was added to the program in order to keep on-campus attendance at a minimum, thus allowing the students to keep their full-time jobs in school. In addition, the use of educational technology to allow students to study anytime anywhere, in keeping with 21st-century innovative teaching-learning practices, was also an issue, as was the wish for this course to serve as a model which the students could then possibly use in their K-12 teaching. On the other hand, there were strong considerations against including an online course in the program. The students in the program were mostly Israeli-Arab married women with young children, living in a traditional society which places a strong emphasis on the place of the woman as a wife, mother, and home-maker. In addition, as teachers, they used much of their free time on school-related tasks. Having careers at the same time as studying was ground-breaking for these women, and using their time at home for studying rather than taking care of their families may have been simply too much to ask of them. At the end of the course, feedback was collected through an online questionnaire including both open and closed questions. The data collected shows that the students believed in online teaching-learning in principle, but had trouble implementing it in practice. This evidence raised the question of whether or not such a course should be included in a graduate program for mature, professional students, particular women with families living in a traditional society. This issue is not relevant to Israel alone, but also to academic institutions worldwide serving such populations. The lecture discusses this issue, sharing the researcher’s conclusions with the audience. Based on the evidence offered, it is the researcher’s conclusion that online education should, indeed, be offered to such audiences. However, the courses should be designed with the students’ special needs in mind, with emphasis placed on initial planning and course organization based on acknowledgment of the teaching context; modeling of online teaching/learning suited for in-service teacher education, and special attention paid to social-constructivist aspects of learning.Keywords: course design, in-service teacher-education, mature students, online teaching/learning
Procedia PDF Downloads 2325840 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan
Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman
Abstract:
The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude toward learning and the educational environment of the student community. Social Media platforms have become a source of collaboration with one another throughout the globe, making it a small world. This study performs a focalized investigation of the adverse and constructive factors that have a strong impact not only on psychological adjustments but also on the academic performance of peers. This study is quantitative research adopting a random sampling method in which the participants were the students at the university. The researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill in the data on the Lickert Scale. The participants are from the age group of 18-24 years. The study applies user and gratification theory in order to examine the behavior of students practicing social media in their academic and personal lives. The findings of the study reveal that the use of social media platforms in the Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by means of seminars, workshops and by media itself to overcome the negative impacts of social media, leading towards sustainable education in Pakistan.Keywords: social media, positive impacts, negative impacts, sustainable education, learning behaviour
Procedia PDF Downloads 565839 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 705838 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 2685837 The Impact of Technology on Handicapped and Disability
Authors: George Kamil Kamal Abdelnor
Abstract:
Every major educational institution has incorporated diversity, equity, and inclusion (DEI) principles into its administrative, hiring, and pedagogical practices. Yet these DEI principles rarely incorporate explicit language or critical thinking about disability. Despite the fact that according to the World Health Organization, one in five people worldwide is disabled, making disabled people the larger minority group in the world, disability remains the neglected stepchild of DEI. Drawing on disability studies and crip theory frameworks, the underlying causes of this exclusion of disability from DEI, such as stigma, shame, invisible disabilities, institutionalization/segregation/delineation from family, and competing models and definitions of disability are examined. This paper explores both the ideological and practical shifts necessary to include disability in university DEI initiatives. It offers positive examples as well as conceptual frameworks such as 'divers ability' for so doing. Using Georgetown University’s 2020-2022 DEI initiatives as a case study, this paper describes how curricular infusion, accessibility, identity, community, and diversity administration infused one university’s DEI initiatives with concrete disability-inclusive measures. It concludes with a consideration of how the very framework of DEI itself might be challenged and transformed if disability were to be included.Keywords: cognitive disability, cognitive diversity, disability, higher education disability, Standardized Index of Diversity of Disability (SIDD), differential and diversity in disability, 60+ population diversity, equity, inclusion, crip theory, accessibility
Procedia PDF Downloads 385836 Teaching Writing in the Virtual Classroom: Challenges and the Way Forward
Authors: Upeksha Jayasuriya
Abstract:
The sudden transition from onsite to online teaching/learning due to the COVID-19 pandemic called for a need to incorporate feasible as well as effective methods of online teaching in most developing countries like Sri Lanka. The English as a Second Language (ESL) classroom faces specific challenges in this adaptation, and teaching writing can be identified as the most challenging task compared to teaching the other three skills. This study was therefore carried out to explore the challenges of teaching writing online and to provide effective means of overcoming them while taking into consideration the attitudes of students and teachers with regard to learning/teaching English writing via online platforms. A survey questionnaire was distributed (electronically) among 60 students from the University of Colombo, the University of Kelaniya, and The Open University in order to find out the challenges faced by students, while in-depth interviews were conducted with 12 lecturers from the mentioned universities. The findings reveal that the inability to observe students’ writing and to receive real-time feedback discourage students from engaging in writing activities when taught online. It was also discovered that both students and teachers increasingly prefer Google Slides over other platforms such as Padlet, Linoit, and Jam Board as it boosts learner autonomy and student-teacher interaction, which in turn allows real-time formative feedback, observation of student work, and assessment. Accordingly, it can be recommended that teaching writing online can be better facilitated by using interactive platforms such as Google Slides, for it promotes active learning and student engagement in the ESL class.Keywords: ESL, teaching writing, online teaching, active learning, student engagement
Procedia PDF Downloads 895835 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives
Authors: Dante Jose R. Amisola, Glenford M. Prospero
Abstract:
'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).Keywords: DLSL four strategic directions , DLSL Lipa mission-vision, driving what's next, social innovation in quality education
Procedia PDF Downloads 2175834 The Correlation between Self-Regulated Learning Strategies and Reading Proficiency
Authors: Nguyen Thu Ha, Vu Viet Phuong, Do Thi Tieu Yen, Nguyen Thi Thanh Ha
Abstract:
This semi-experimental research investigated the correlation between 42 English as a foreign language (EFL) sophomores' self-regulated learning strategies (SRL) use and their reading comprehension in the Vietnamese context. The analysis from TOEIC reading tests with SPSS 25.0 indicated that there are substantial differences between the post-test reading scores between the experimental group and the control group; therefore, SRL impacts the reading comprehension of EFL participants. Contrary to the alternative hypothesis, teaching learners SRL approaches had a statistically significant influence on reading comprehension. The findings may aid educators in teaching reading comprehension as an essential skill and in using SRL to improve reading comprehension and achievement and enhance reading comprehension aids for language students and instructors. They should equip educators with a variety of instructional strategies which assist academics in preparing learners for lifetime language study and independence. Moreover, the results might encourage educators, administrators, and policymakers to capitalize on the effects of teaching SRL strategies by providing EFL teachers with preparation programs and experiences that help them improve their teaching methods and strategies, especially when teaching reading comprehension.Keywords: correlation, reading proficiency, self-regulated learning strategies, SRL, TOEIC reading comprehension
Procedia PDF Downloads 955833 Recent Developments in Coping Strategies Focusing on Music Performance Anxiety: A Systematic Review
Authors: Parham Bakhtiari
Abstract:
Music performance anxiety (MPA) is a prevalent concern among musicians, manifesting through cognitive, physiological, and behavioral symptoms that can severely impact performance quality and overall well-being. This systematic review synthesizes research on coping strategies employed by musicians to manage MPA from 2016 to 2023, identifying a range of psychological and physical interventions, including acceptance and commitment therapy (ACT), cognitive behavioral therapy (CBT), mindfulness, and yoga. Findings reveal that these interventions significantly reduce anxiety and enhance psychological resilience, with ACT showing notable improvements in psychological flexibility. Physical approaches also proved effective in mitigating physiological symptoms associated with MPA. However, challenges such as small sample sizes and methodological limitations hinder the generalizability of results. The review underscores the necessity for multi-faceted intervention strategies tailored to the unique needs of different musicians and emphasizes the importance of future research employing larger, randomized controlled designs to further validate these findings. Overall, this review serves as a comprehensive resource for musicians seeking effective coping strategies for managing performance anxiety, highlighting the critical interplay between mental and physical approaches in promoting optimal performance outcomes.Keywords: anxiety, performance, coping, music, strategy
Procedia PDF Downloads 275832 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 895831 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 1835830 Designing Effective Serious Games for Learning and Conceptualization Their Structure
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.Keywords: game development, game design, requirements, serious games, serious game model.
Procedia PDF Downloads 62