Search results for: chemical learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11632

Search results for: chemical learning

8902 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj

Abstract:

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% are neutral sugar and the rest 16.25±1.62% are uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructo-oligosaccharide (RP95). The oligosaccharides concentration was 1g/L of man rogosa sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects

Procedia PDF Downloads 410
8901 Exploring the Impact of Feedback on English as a Foreign Language Speaking Proficiency

Authors: Santri Emilin Pingsaboi Djahimo, Ikhfi Imaniah

Abstract:

Helping students recognize both their strengths and weaknesses is a beneficial strategy for teachers to be implemented in the classroom, and feedback has been acknowledged as an effective tool to achieve this goal. It will allow teachers to assess the students’ progress, provide targeted support for them, and adjust both teaching and learning strategies. This research has investigated the importance of feedback in English as a Foreign Language (EFL) speaking class in East Nusa Tenggara Province, Indonesia. Through a qualitative study, it has shed light on the crucial roles of feedback in the process of English Language Teaching (ELT), especially, in the context of developing oral communication or speaking skills. Additionally, it has also examined students’ responses to feedback from their teacher by grouping them based on their semester, scores (GPA), and gender. This study, which seeks to provide insights into how feedback practices can be optimized to maximize learning outcomes in the English-speaking classroom, has revealed that these groups of students have different level of needs for feedback, yet all prefer constructive feedback. Looking at the results, it is highly expected that this study can contribute to a deeper understanding of the correlation between feedback and English language learning outcomes, particularly, in terms of speaking proficiency.

Keywords: feedback, English as a foreign language, speaking class, English language teaching

Procedia PDF Downloads 24
8900 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 104
8899 Machine Learning Assisted Performance Optimization in Memory Tiering

Authors: Derssie Mebratu

Abstract:

As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.

Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM

Procedia PDF Downloads 96
8898 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking

Authors: Adi Gielgun-Katz, Alina S. Rusu

Abstract:

In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.

Keywords: social-emotional learning, photography, education program, adolescents

Procedia PDF Downloads 85
8897 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 164
8896 Gray’s Anatomy for Students: First South Asia Edition Highlights

Authors: Raveendranath Veeramani, Sunil Jonathan Holla, Parkash Chand, Sunil Chumber

Abstract:

Gray’s Anatomy for Students has been a well-appreciated book among undergraduate students of anatomy in Asia. However, the current curricular requirements of anatomy require a more focused and organized approach. The editors of the first South Asia edition of Gray’s Anatomy for Students hereby highlight the modifications and importance of this edition. There is an emphasis on active learning by making the clinical relevance of anatomy explicit. Learning anatomy in context has been fostered by the association between anatomists and clinicians in keeping with the emerging integrated curriculum of the 21st century. The language has been simplified to aid students who have studied in the vernacular. The original illustrations have been retained, and few illustrations have been added. There are more figure numbers mentioned in the text to encourage students to refer to the illustrations while learning. The text has been made more student-friendly by adding generalizations, classifications and summaries. There are useful review materials at the beginning of the chapters which include digital resources for self-study. There are updates on imaging techniques to encourage students to appreciate the importance of essential knowledge of the relevant anatomy to interpret images, due emphasis has been laid on dissection. Additional importance has been given to the cranial nerves, by describing their relevant details with several additional illustrations and flowcharts. This new edition includes innovative features such as set inductions, outlines for subchapters and flowcharts to facilitate learning. Set inductions are mostly clinical scenarios to create interest in the need to study anatomy for healthcare professions. The outlines are a modern multimodal facilitating approach towards various topics to empower students to explore content and direct their learning and include learning objectives and material for review. The components of the outline encourage the student to be aware of the need to create solutions to clinical problems. The outlines help students direct their learning to recall facts, demonstrate and analyze relationships, use reason to explain concepts, appreciate the significance of structures and their relationships and apply anatomical knowledge. The 'structures to be identified in a dissection' are given as Level I, II and III which represent the 'must know, desirable to know and nice to know' content respectively. The flowcharts have been added to get an overview of the course of a structure, recapitulate important details about structures, and as an aid to recall. There has been a great effort to balance the need to have content that would enable students to understand concepts as well as get the basic material for the current condensed curriculum.

Keywords: Grays anatomy, South Asia, human anatomy, students anatomy

Procedia PDF Downloads 201
8895 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective

Authors: Smita Singh

Abstract:

Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.

Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms

Procedia PDF Downloads 29
8894 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 78
8893 Assessment of Physical Learning Environments in ECE: Interdisciplinary and Multivocal Innovation for Chilean Kindergartens

Authors: Cynthia Adlerstein

Abstract:

Physical learning environment (PLE) has been considered, after family and educators, as the third teacher. There have been conflicting and converging viewpoints on the role of the physical dimensions of places to learn, in facilitating educational innovation and quality. Despite the different approaches, PLE has been widely recognized as a key factor in the quality of the learning experience , and in the levels of learning achievement in ECE . The conceptual frameworks of the field assume that PLE consists of a complex web of factors that shape the overall conditions for learning, and that much more interdisciplinary and complementary methodologies of research and development are required. Although the relevance of PLE attracts a broad international consensus, in Chile it remains under-researched and weakly regulated by public policy. Gaining deeper contextual understanding and more thoughtfully-designed recommendations require the use of innovative assessment tools that cross cultural and disciplinary boundaries to produce new hybrid approaches and improvements. When considering a PLE-based change process for ECE improvement, a central question is what dimensions, variables and indicators could allow a comprehensive assessment of PLE in Chilean kindergartens? Based on a grounded theory social justice inquiry, we adopted a mixed method design, that enabled a multivocal and interdisciplinary construction of data. By using in-depth interviews, discussion groups, questionnaires, and documental analysis, we elicited the PLE discourses of politicians, early childhood practitioners, experts in architectural design and ergonomics, ECE stakeholders, and 3 to 5 year olds. A constant comparison method enabled the construction of the dimensions, variables and indicators through which PLE assessment is possible. Subsequently, the instrument was applied in a sample of 125 early childhood classrooms, to test reliability (internal consistency) and validity (content and construct). As a result, an interdisciplinary and multivocal tool for assessing physical learning environments was constructed and validated, for Chilean kindergartens. The tool is structured upon 7 dimensions (wellbeing, flexible, empowerment, inclusiveness, symbolically meaningful, pedagogically intentioned, institutional management) 19 variables and 105 indicators that are assessed through observation and registration on a mobile app. The overall reliability of the instrument is .938 while the consistency of each dimension varies between .773 (inclusive) and .946 (symbolically meaningful). The validation process through expert opinion and factorial analysis (chi-square test) has shown that the dimensions of the assessment tool reflect the factors of physical learning environments. The constructed assessment tool for kindergartens highlights the significance of the physical environment in early childhood educational settings. The relevance of the instrument relies in its interdisciplinary approach to PLE and in its capability to guide innovative learning environments, based on educational habitability. Though further analysis are required for concurrent validation and standardization, the tool has been considered by practitioners and ECE stakeholders as an intuitive, accessible and remarkable instrument to arise awareness on PLE and on equitable distribution of learning opportunities.

Keywords: Chilean kindergartens, early childhood education, physical learning environment, third teacher

Procedia PDF Downloads 357
8892 Study on Preparation and Storage of Composite Vegetable Squash of Tomato, Pumpkin and Ginger

Authors: K. Premakumar, R. G. Lakmali, S. M. A. C. U. Senarathna

Abstract:

In the present world, production and consumption of fruit and vegetable beverages have increased owing to the healthy life style of the people. Therefore, a study was conducted to develop composite vegetable squash by incorporating nutritional, medicinal and organoleptic properties of tomato, pumpkin and ginger. Considering the finding of several preliminary studies, five formulations in different combinations tomato pumpkin were taken and their physico-chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content and total sugar and organoleptic parameters such as colour, aroma, taste, nature, overall acceptability were analyzed. Then the best sample was improved by using 1 % ginger (50% tomato+ 50% pumpkin+ 1% ginger). Best three formulations were selected for storage studied. The formulations were stored at 30 °C room temperature and 70-75% of RH for 12 weeks. Physicochemical parameters , organoleptic and microbial activity (total plate count, yeast and mold, E-coil) were analyzed during storage periods and protein content, fat content, ash were also analysed%.The study on the comparison of physico-chemical and sensory qualities of stored Squashes was done up to 12 weeks storage periods. The nutritional analysis of freshly prepared tomato pumpkin vegetable squash formulations showed increasing trend in titratable acidity, pH, total sugar, non -reducing sugar, total soluble solids and decreasing trend in ascorbic acid and reducing sugar with storage periods. The results of chemical analysis showed that, there were the significant different difference (p < 0.05) between tested formulations. Also, sensory analysis also showed that there were significant differences (p < 0.05) for organoleptic character characters between squash formulations. The highest overall acceptability was observed in formulation with 50% tomato+ 50% pumpkin+1% ginger and all the all the formulations were microbiologically safe for consumption. Based on the result of physico-chemical characteristics, sensory attributes and microbial test, the Composite Vegetable squash with 50% tomato+50% pumpkin+1% ginger was selected as best formulation and could be stored for 12 weeks without any significant changes in quality characteristics.

Keywords: nutritional analysis, formulations, sensory attributes, squash

Procedia PDF Downloads 199
8891 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 103
8890 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 95
8889 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 106
8888 Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology

Authors: H. Al-Jabli

Abstract:

The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities.

Keywords: heavy metals, bromate, ozonation, GIS

Procedia PDF Downloads 81
8887 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
8886 Quality of Education in Dilla Zone

Authors: Gezahegn Bekele Welldgiyorgise

Abstract:

It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.

Keywords: curriculum, performance, innovation, learning

Procedia PDF Downloads 77
8885 Health Hazards Among Health Care Workers and Associated Factors in Public Hospitals, Sana'a-Yemen

Authors: Makkia Ahmad Ali Al-Falahi, Abdullah Abdelaziz Muharram

Abstract:

Background: Healthcare workers (HCWs) in Yemen are exposed to a myriad of occupational health hazards, including biological, physical, ergonomic, chemical and psychosocial hazards. HCWs operate in an environment that is considered to be one of the most hazardous occupational settings. Objective: To assess the prevalence of occupational health hazards among healthcare workers and associated risk factors in public hospitals in Sana'a City, Yemen. Method: Descriptive cross-sectional design was utilized; out of 5443 totals of HCWs 396 were selected by multistage sampling technique was carried out in the public hospitals in Sana'a city, Yemen. Results: More the half (60.6%) of HCWs aged between 20-30 years, (50.8%) were males, (56.3%) were married, and (45.5%) had a diploma qualification, while (65.2%) of HCWs had less than 6 years of experience. The result showed that the highest prevalence of occupational hazards was (99%), (ergonomic hazards (93.4%), biological hazards (87.6%), psychosocial (86.65%), physical hazards (83.3%), and chemical hazards (73.5%). There were no statistically significant differences between demographic characteristics and the prevalence of occupational hazards (p >0.05). Conclusion and recommendations: The study showed the highest prevalence of occupational hazards; regarding the prevalence of biological hazards exposure to sharp-related injury, the most prevalent physical hazards were slip/trip/and fall. Ergonomic hazards had back or neck pain during work. Chemical hazards were allergic to medical gloves powder. On psychosocial hazards was suffered from verbal and physical harassment. The study concluded by raising awareness among HCWs by conducting training courses to prevent occupational hazards.

Keywords: health workers, occupational hazards, risk factors, the prevalence

Procedia PDF Downloads 82
8884 Translation as a Foreign Language Teaching Tool: Results of an Experiment with University Level Students in Spain

Authors: Nune Ayvazyan

Abstract:

Since the proclamation of monolingual foreign-language learning methods (the Berlitz Method in the early 20ᵗʰ century and the like), the dilemma has been to allow or not to allow learners’ mother tongue in the foreign-language learning process. The reason for not allowing learners’ mother tongue is reported to create a situation of immersion where students will only use the target language. It could be argued that this artificial monolingual situation is defective, mainly because there are very few real monolingual situations in the society. This is mainly due to the fact that societies are nowadays increasingly multilingual as plurilingual speakers are the norm rather than an exception. More recently, the use of learners’ mother tongue and translation has been put under the spotlight as valid foreign-language teaching tools. The logic dictates that if learners were permitted to use their mother tongue in the foreign-language learning process, that would not only be natural, but also would give them additional means of participation in class, which could eventually lead to learning. For example, when learners’ metalinguistic skills are poor in the target language, a question they might have could be asked in their mother tongue. Otherwise, that question might be left unasked. Attempts at empirically testing the role of translation as a didactic tool in foreign-language teaching are still very scant. In order to fill this void, this study looks into the interaction patterns between students in two kinds of English-learning classes: one with translation and the other in English only (immersion). The experiment was carried out with 61 students enrolled in a second-year university subject in English grammar in Spain. All the students underwent the two treatments, classes with translation and in English only, in order to see how they interacted under the different conditions. The analysis centered on four categories of interaction: teacher talk, teacher-initiated student interaction, student-initiated student-to-teacher interaction, and student-to-student interaction. Also, pre-experiment and post-experiment questionnaires and individual interviews gathered information about the students’ attitudes to translation. The findings show that translation elicited more student-initiated interaction than did the English-only classes, while the difference in teacher-initiated interactional turns was not statistically significant. Also, student-initiated participation was higher in comprehension-based activities (into L1) as opposed to production-based activities (into L2). As evidenced by the questionnaires, the students’ attitudes to translation were initially positive and mainly did not vary as a result of the experiment.

Keywords: foreign language, learning, mother tongue, translation

Procedia PDF Downloads 162
8883 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement

Authors: Issam Lakdhar, Akram Alhussein, Juan Creus

Abstract:

With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.

Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties

Procedia PDF Downloads 185
8882 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface

Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny

Abstract:

In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.

Keywords: brain-computer interface, creative thinking, meditation, mental health

Procedia PDF Downloads 127
8881 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods

Authors: Robert Cazar, Nathaly Maza

Abstract:

Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.

Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks

Procedia PDF Downloads 109
8880 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 134
8879 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 112
8878 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
8877 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 128
8876 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 301
8875 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 161
8874 The Optimisation of Salt Impregnated Matrices as Potential Thermochemical Storage Materials

Authors: Robert J. Sutton, Jon Elvins, Sean Casey, Eifion Jewell, Justin R. Searle

Abstract:

Thermochemical storage utilises chemical salts which store and release energy a fully reversible endo/exothermic chemical reaction. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 (SIMs – Salt In Matrices) are proposed as potential materials for long-term thermochemical storage. The behavior of these materials during typical hydration and dehydration cycles is investigated. A simple moisture experiment represents the hydration, whilst thermogravimetric analysis (TGA) represents the dehydration. Further experiments to approximate the energy density and to determine the peak output temperatures of the SIMs are conducted. The CaCl2 SIM is deemed the best performing SIM across most experiments, whilst the results of MgSO4 SIM indicate difficulty associated with energy recovery.

Keywords: hydrated states, inter-seasonal heat storage, moisture sorption, salt in matrix

Procedia PDF Downloads 554
8873 The Quantity and Quality of Teacher Talking Time in EFL Classroom

Authors: Hanan Abufares Elkhimry

Abstract:

Looking for more effective teaching and learning approaches, teaching instructors have been telling trainee teachers to decrease their talking time, but the problem is how best to do this. Doing classroom research, specifically in the area of teacher talking time (TTT), is worthwhile, as it could improve the quality of teaching languages, as the learners are the ones who should be practicing and using the language. This work hopes to ascertain if teachers consider this need in a way that provides the students with the opportunities to increase their production of language. This is a question that is worthwhile answering. As many researchers have found, TTT should be decreased to 30% of classroom talking time and STT should be increased up to 70%. Other researchers agree with this, but add that it should be with awareness of the quality of teacher talking time. Therefore, this study intends to investigate the balance between quantity and quality of teacher talking time in the EFL classroom. For this piece of research and in order to capture the amount of talking in a four classrooms. The amount of talking time was measured. A Checklist was used to assess the quality of the talking time In conclusion, In order to improve the quality of TTT, the results showed that teachers may use more or less than 30% of the classroom talking time and still produce a successful classroom learning experience. As well as, the important factors that can affect TTT is the English level of the students. This was clear in the classroom observations, where the highest TTT recorded was with the lowest English level group.

Keywords: teacher talking time TTT, learning experience, classroom research, effective teaching

Procedia PDF Downloads 415