Search results for: road networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: road networks

1261 Emotiv EPOC BCI Matrix Speller Based on Single Emokey

Authors: S. M. Abdullah Al Mamun

Abstract:

Human Computer Interaction (HCI) is an excellent area for the researchers to make daily life more simple and fast. Necessary hardware equipments for any BCI are generally expensive and not affordable for most of the people. Emotiv is one of the solutions for this problem, which can provide electroencephalograph (EEG) signal and explain the brain activities. BCI virtual speller was one of the important applications for the people who have lost their hand or speaking ability because of diseases or unexpected accident. In this paper, a matrix speller has been designed for the first time for Bengali speaking people around the world. Bengali is one of the most commonly spoken languages. Among them, a lot of disabled person will be able to express their desire in their mother tongue. This application is also usable for the social networks and daily life communications. For this virtual keyboard, the well-known matrix speller method with column flashing is applied and controlled by single Emokey only. Emokey is a great feature which translates emotional state for application inputs. In this paper, it is presented that the ITR (Information Transfer Rate) were 29.4 bits/min and typing speed achieved up to 7.43 char/per min.

Keywords: brain computer interface, Emotiv EPOC, EEG, virtual keyboard, matrix speller

Procedia PDF Downloads 308
1260 The Relationship Between Car Drivers' Background Information and Risky Events In I- Dreams Project

Authors: Dagim Dessalegn Haile

Abstract:

This study investigated the interaction between the drivers' socio-demographic background information (age, gender, and driving experience) and the risky events score in the i-DREAMS platform. Further, the relationship between the participants' background driving behavior and the i-DREAMS platform behavioral output scores of risky events was also investigated. The i-DREAMS acronym stands for Smart Driver and Road Environment Assessment and Monitoring System. It is a European Union Horizon 2020 funded project consisting of 13 partners, researchers, and industry partners from 8 countries. A total of 25 Belgian car drivers (16 male and nine female) were considered for analysis. Drivers' ages were categorized into ages 18-25, 26-45, 46-65, and 65 and older. Drivers' driving experience was also categorized into four groups: 1-15, 16-30, 31-45, and 46-60 years. Drivers are classified into two clusters based on the recorded score for risky events during phase 1 (baseline) using risky events; acceleration, deceleration, speeding, tailgating, overtaking, and lane discipline. Agglomerative hierarchical clustering using SPSS shows Cluster 1 drivers are safer drivers, and Cluster 2 drivers are identified as risky drivers. The analysis result indicated no significant relationship between age groups, gender, and experience groups except for risky events like acceleration, tailgating, and overtaking in a few phases. This is mainly because the fewer participants create less variability of socio-demographic background groups. Repeated measure ANOVA shows that cluster 2 drivers improved more than cluster 1 drivers for tailgating, lane discipline, and speeding events. A positive relationship between background drivers' behavior and i-DREAMS platform behavioral output scores is observed. It implies that car drivers who in the questionnaire data indicate committing more risky driving behavior demonstrate more risky driver behavior in the i-DREAMS observed driving data.

Keywords: i-dreams, car drivers, socio-demographic background, risky events

Procedia PDF Downloads 70
1259 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining

Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi

Abstract:

Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.

Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory

Procedia PDF Downloads 403
1258 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
1257 Cooperative Agents to Prevent and Mitigate Distributed Denial of Service Attacks of Internet of Things Devices in Transportation Systems

Authors: Borhan Marzougui

Abstract:

Road and Transport Authority (RTA) is moving ahead with the implementation of the leader’s vision in exploring all avenues that may bring better security and safety services to the community. Smart transport means using smart technologies such as IoT (Internet of Things). This technology continues to affirm its important role in the context of Information and Transportation Systems. In fact, IoT is a network of Internet-connected objects able to collect and exchange different data using embedded sensors. With the growth of IoT, Distributed Denial of Service (DDoS) attacks is also growing exponentially. DDoS attacks are the major and a real threat to various transportation services. Currently, the defense mechanisms are mainly passive in nature, and there is a need to develop a smart technique to handle them. In fact, new IoT devices are being used into a botnet for DDoS attackers to accumulate for attacker purposes. The aim of this paper is to provide a relevant understanding of dangerous types of DDoS attack related to IoT and to provide valuable guidance for the future IoT security method. Our methodology is based on development of the distributed algorithm. This algorithm manipulates dedicated intelligent and cooperative agents to prevent and to mitigate DDOS attacks. The proposed technique ensure a preventive action when a malicious packets start to be distributed through the connected node (Network of IoT devices). In addition, the devices such as camera and radio frequency identification (RFID) are connected within the secured network, and the data generated by it are analyzed in real time by intelligent and cooperative agents. The proposed security system is based on a multi-agent system. The obtained result has shown a significant reduction of a number of infected devices and enhanced the capabilities of different security dispositives.

Keywords: IoT, DDoS, attacks, botnet, security, agents

Procedia PDF Downloads 143
1256 Water Supply and Utility Management to Address Urban Sanitation Issues

Authors: Akshaya P., Priyanjali Prabhkaran

Abstract:

The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.

Keywords: water, benchmarking water supply, water supply networks, water supply management

Procedia PDF Downloads 109
1255 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 363
1254 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data

Procedia PDF Downloads 196
1253 A Blockchain-Based Protection Strategy against Social Network Phishing

Authors: Francesco Buccafurri, Celeste Romolo

Abstract:

Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.

Keywords: phishing, social networks, information sharing, blockchain

Procedia PDF Downloads 328
1252 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
1251 A Survey on Intelligent Traffic Management with Cooperative Driving in Urban Roads

Authors: B. Karabuluter, O. Karaduman

Abstract:

Traffic management and traffic planning are important issues, especially in big cities. Due to the increase of personal vehicles and the physical constraints of urban roads, the problem of transportation especially in crowded cities over time is revealed. This situation reduces the living standards, and it can put human life at risk because the vehicles such as ambulance, fire department are prevented from reaching their targets. Even if the city planners take these problems into account, emergency planning and traffic management are needed to avoid cases such as traffic congestion, intersections, traffic jams caused by traffic accidents or roadworks. In this study, in smart traffic management issues, proposed solutions using intelligent vehicles acting in cooperation with urban roads are examined. Traffic management is becoming more difficult due to factors such as fatigue, carelessness, sleeplessness, social behavior patterns, and lack of education. However, autonomous vehicles, which remove the problems caused by human weaknesses by providing driving control, are increasing the success of practicing the algorithms developed in city traffic management. Such intelligent vehicles have become an important solution in urban life by using 'swarm intelligence' algorithms and cooperative driving methods to provide traffic flow, prevent traffic accidents, and increase living standards. In this study, studies conducted in this area have been dealt with in terms of traffic jam, intersections, regulation of traffic flow, signaling, prevention of traffic accidents, cooperation and communication techniques of vehicles, fleet management, transportation of emergency vehicles. From these concepts, some taxonomies were made out of the way. This work helps to develop new solutions and algorithms for cities where intelligent vehicles that can perform cooperative driving can take place, and at the same time emphasize the trend in this area.

Keywords: intelligent traffic management, cooperative driving, smart driving, urban road, swarm intelligence, connected vehicles

Procedia PDF Downloads 332
1250 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
1249 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
1248 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 75
1247 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process

Authors: Hen Friman

Abstract:

Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.

Keywords: renewable energy, solar energy, innovative, wastewater treatment

Procedia PDF Downloads 108
1246 Multiple Identity Construction among Multilingual Minorities: A Quantitative Sociolinguistic Case Study

Authors: Stefanie Siebenhütter

Abstract:

This paper aims to reveal criterions involved in the process of identity-forming among multilingual minority language speakers in Northeastern Thailand and in the capital Bangkok. Using sociolinguistic interviews and questionnaires, it is asked which factors are important for speakers and how they define their identity by their interactions socially as well as linguistically. One key question to answer is how sociolinguistic factors may force or diminish the process of forming social identity of multilingual minority speakers. However, the motivation for specific language use is rarely overt to the speaker’s themselves as well as to others. Therefore, identifying the intentions included in the process of identity construction is to approach by scrutinizing speaker’s behavior and attitudes. Combining methods used in sociolinguistics and social psychology allows uncovering the tools for identity construction that ethnic Kui uses to range themselves within a multilingual setting. By giving an overview of minority speaker’s language use in context of the specific border near multilingual situation and asking how speakers construe identity within this spatial context, the results exhibit some of the subtle and mostly unconscious criterions involved in the ongoing process of identity construction.

Keywords: social identity, identity construction, minority language, multilingualism, social networks, social boundaries

Procedia PDF Downloads 267
1245 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 178
1244 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 126
1243 Multidisciplinary Approach for a Tsunami Reconstruction Plan in Coquimbo, Chile

Authors: Ileen Van den Berg, Reinier J. Daals, Chris E. M. Heuberger, Sven P. Hildering, Bob E. Van Maris, Carla M. Smulders, Rafael Aránguiz

Abstract:

Chile is located along the subduction zone of the Nazca plate beneath the South American plate, where large earthquakes and tsunamis have taken place throughout history. The last significant earthquake (Mw 8.2) occurred in September 2015 and generated a destructive tsunami, which mainly affected the city of Coquimbo (71.33°W, 29.96°S). The inundation area consisted of a beach, damaged seawall, damaged railway, wetland and old neighborhood; therefore, local authorities started a reconstruction process immediately after the event. Moreover, a seismic gap has been identified in the same area, and another large event could take place in the near future. The present work proposed an integrated tsunami reconstruction plan for the city of Coquimbo that considered several variables such as safety, nature & recreation, neighborhood welfare, visual obstruction, infrastructure, construction process, and durability & maintenance. Possible future tsunami scenarios are simulated by means of the Non-hydrostatic Evolution of Ocean WAVEs (NEOWAVE) model with 5 nested grids and a higher grid resolution of ~10 m. Based on the score from a multi-criteria analysis, the costs of the alternatives and a preference for a multifunctional solution, the alternative that includes an elevated coastal road with floodgates to reduce tsunami overtopping and control the return flow of a tsunami was selected as the best solution. It was also observed that the wetlands are significantly restored to their former configuration; moreover, the dynamic behavior of the wetlands is stimulated. The numerical simulation showed that the new coastal protection decreases damage and the probability of loss of life by delaying tsunami arrival time. In addition, new evacuation routes and a smaller inundation zone in the city increase safety for the area.

Keywords: tsunami, Coquimbo, Chile, reconstruction, numerical simulation

Procedia PDF Downloads 241
1242 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region

Authors: Musab Isah

Abstract:

This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.

Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool

Procedia PDF Downloads 63
1241 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network

Authors: Manverpreet Kaur, Amarpreet Singh

Abstract:

The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.

Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)

Procedia PDF Downloads 247
1240 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 245
1239 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
1238 Transfer of Information Heritage between Algerian Veterinarians and Breeders: Assessment of Information and Communication Technology Using Mobile Phone

Authors: R. Bernaoui, P. Ohly

Abstract:

Our research shows the use of the mobile phone that consolidates the relationship between veterinarians, and that between breeders and veterinarians. On the other hand it asserts that the tool in question is a means of economic development. The results of our survey reveal a positive return to the veterinary community, which shows that the mobile phone has become an effective means of sustainable development through the transfer of a rapid and punctual information inheritance via social networks; including many Internet applications. Our results show that almost all veterinarians use the mobile phone for interprofessional communication. We therefore believe that the use of the mobile phone by livestock operators has greatly improved the working conditions, just as the use of this tool contributes to a better management of the exploitation as long as it allows limit travel but also save time. These results show that we are witnessing a growth in the use of mobile telephony technologies that impact is as much in terms of sustainable development. Allowing access to information, especially technical information, the mobile phone, and Information and Communication of Technology (ICT) in general, give livestock sector players not only security, by limiting losses, but also an efficiency that allows them a better production and productivity.

Keywords: algeria, breeder-veterinarian, digital heritage, networking

Procedia PDF Downloads 121
1237 Economic Development Impacts of Connected and Automated Vehicles (CAV)

Authors: Rimon Rafiah

Abstract:

This paper will present a combination of two seemingly unrelated models, which are the one for estimating economic development impacts as a result of transportation investment and the other for increasing CAV penetration in order to reduce congestion. Measuring economic development impacts resulting from transportation investments is becoming more recognized around the world. Examples include the UK’s Wider Economic Benefits (WEB) model, Economic Impact Assessments in the USA, various input-output models, and additional models around the world. The economic impact model is based on WEB and is based on the following premise: investments in transportation will reduce the cost of personal travel, enabling firms to be more competitive, creating additional throughput (the same road allows more people to travel), and reducing the cost of travel of workers to a new workplace. This reduction in travel costs was estimated in out-of-pocket terms in a given localized area and was then translated into additional employment based on regional labor supply elasticity. This additional employment was conservatively assumed to be at minimum wage levels, translated into GDP terms, and from there into direct taxation (i.e., an increase in tax taken by the government). The CAV model is based on economic principles such as CAV usage, supply, and demand. Usage of CAVs can increase capacity using a variety of means – increased automation (known as Level I thru Level IV) and also by increased penetration and usage, which has been predicted to go up to 50% by 2030 according to several forecasts, with possible full conversion by 2045-2050. Several countries have passed policies and/or legislation on sales of gasoline-powered vehicles (none) starting in 2030 and later. Supply was measured via increased capacity on given infrastructure as a function of both CAV penetration and implemented technologies. The CAV model, as implemented in the USA, has shown significant savings in travel time and also in vehicle operating costs, which can be translated into economic development impacts in terms of job creation, GDP growth and salaries as well. The models have policy implications as well and can be adapted for use in Japan as well.

Keywords: CAV, economic development, WEB, transport economics

Procedia PDF Downloads 74
1236 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
1235 Imported Oil Logistics to Central and Southern Europe Refineries

Authors: Vladimir Klepikov

Abstract:

Countries of Central and Southern Europe have a typical feature: oil consumption in the region exceeds own commodity production capacity by far. So crude oil import prevails in the region’s crude oil consumption structure. Transportation using marine and pipeline transport is a common method of the imported oil delivery in the region. For certain refineries, in addition to possible transportation by oil pipelines from seaports, oil is delivered from Russian oil fields. With the view to these specific features and geographic location of the region’s refineries, three ways of imported oil delivery can be singled out: oil delivery by tankers to the port and subsequent transportation by pipeline transport of the port and the refinery; oil delivery by tanker fleet to the port and subsequent transportation by oil trunk pipeline transport; oil delivery from the fields by oil trunk pipelines to refineries. Oil is also delivered by road, internal water, and rail transport. However, the volumes transported this way are negligible in comparison to the three above transportation means. Multimodal oil transportation to refineries using the pipeline and marine transport is one of the biggest cargo flows worldwide. However, in scientific publications this problem is considered mainly for certain modes of transport. Therefore, this study is topical. To elaborate an efficient transportation policy of crude oil supply to Central and Southern Europe, in this paper the geographic concentration of oil refineries was determined and the capacities of the region’s refineries were assessed. The quantitative analysis method is used as a tool. The port infrastructure and the oil trunk pipeline system capacity were assessed in terms of delivery of raw materials to the refineries. The main groups of oil consuming countries were determined. The trends of crude oil production in the region were reviewed. The changes in production capacities and volumes at refineries in the last decade were shown. Based on the revealed refining trends, the scope of possible crude oil supplies to the refineries of the region under review was forecast. The existing transport infrastructure is able to handle the increased oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, refinery capacity, tanker draft

Procedia PDF Downloads 157
1234 Drivers and Barriers of Asphalt Rubber in Sweden

Authors: Raheb Mirzanamadi, João Patrício

Abstract:

Asphalt rubber (AR) was initially developed in Sweden in the 1960s by replacing crumb rubber (CR) as aggregates in asphalt pavement. The AR produced by this method had better mechanical properties than conventional asphalt pavement but was very expensive. Since then, different technologies and methods have been developed to use CR in asphalt pavements, including blending CR with bitumen at a high temperature in the mixture, called the wet method, and blending CR with bitumen in the refinery, called the terminal blending method. In 2006, the wet method was imported from the USA to Sweden to evaluate the potential of using AR on Swedish roads. 154 km AR roads were constructed by the wet method in Sweden. The evaluation showed that the AR had, in most cases, better mechanical performance than conventional asphalt pavements. However, the terrible smoke and smell led the Swedish Transport Administration (STA) to stop using AR in Sweden. Today, there are few focuses on AR, despite its good mechanical properties and environmental aspects. Hence, there is a need to study the drives and barriers of using AR mixture in Sweden. The aims of this paper are: (i) to study drivers and barriers of using AR pavements in Sweden and (ii) to discover knowledge gaps for further research in this area. The study was done using a literature review and completed by interviews with experts, including three researchers from Swedish National Road and Transport Research Institute (VTI) and two experts from STA. The results showed that AR can be an alternative not only for conventional asphalt pavement but also for polymer modified asphalt (PMA) due to the same mechanical properties but the lower cost for production. New technologies such as terminal blending and using warm mix asphalt (WMA) methods can lead to reducing the energy and temperature during production processes. From this study, it is found that there is not enough experience and knowledge about AR in Sweden, and more research is needed, including the lifespan of AR, mechanical properties of AR using new technologies, and the impact of AR on spreading and leaching substances into nature. More studies can lead to standardization of using AR in Sweden, a potential solution for the use of end-of-life tyres, with better mechanical properties and lower costs, in comparison with conventional asphalt pavements and PMA.

Keywords: asphalt rubber, crumb rubber, terminal blending method, wet method

Procedia PDF Downloads 82
1233 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network

Procedia PDF Downloads 330
1232 Multi-Criterial Analysis: Potential Regions and Height of Wind Turbines, Rio de Janeiro, Brazil

Authors: Claudio L. M. Souza, Milton Erthal, Aldo Shimoya, Elias R. Goncalves, Igor C. Rangel, Allysson R. T. Tavares, Elias G. Figueira

Abstract:

The process of choosing a region for the implementation of wind farms involves factors such as the wind regime, economic viability, land value, topography, and accessibility. This work presents results obtained by multi-criteria decision analysis, and it establishes a hierarchy, regarding the installation of wind farms, among geopolicy regions in the state of ‘Rio de Janeiro’, Brazil: ‘Regiao Norte-RN’, ‘Regiao dos Lagos-RL’ and ‘Regiao Serrana-RS’. The wind regime map indicates only these three possible regions with an average annual wind speed of above of 6.0 m/s. The method applied was the Analytical Hierarchy Process-AHP, designed to prioritize and rank the three regions based on four criteria as follows: 1) potential of the site and average wind speeds of above 6.0 ms-¹, 2) average land value, 3) distribution and interconnection to electric network with the highest number of electricity stations, and 4) accessibility with proximity and quality of highways and flat topography. The values of energy generation were calculated for wind turbines 50, 75, and 100 meters high, considering the production of site (GWh/Km²) and annual production (GWh). The weight of each criterion was attributed by six engineers and by analysis of Road Map, the Map of the Electric System, the Map of Wind Regime and the Annual Land Value Report. The results indicated that in 'RS', the demand was estimated at 2,000 GWh, so a wind farm can operate efficiently in 50 m turbines. This region is mainly mountainous with difficult access and lower land value. With respect to ‘RL’, the wind turbines have to be installed at a height of 75 m high to reach a demand of 6,300 GWh. This region is very flat, with easy access, and low land value. Finally, the ‘NR’ was evaluated as very flat and with expensive lands. In this case, wind turbines with 100 m can reach an annual production of 19,000 GWh. In this Region, the coast area was classified as of greater logistic, productivity and economic potential.

Keywords: AHP, renewable energy, wind energy

Procedia PDF Downloads 151