Search results for: corpus based approach
33359 A Heuristic for the Integrated Production and Distribution Scheduling Problem
Authors: Christian Meinecke, Bernd Scholz-Reiter
Abstract:
The integrated problem of production and distribution scheduling is relevant in many industrial applications. Thus, many heuristics to solve this integrated problem have been developed in the last decade. Most of these heuristics use a sequential working principal or a single decomposition and integration approach to separate and solve sub-problems. A heuristic using a multi-step decomposition and integration approach is presented in this paper and evaluated in a case study. The result show significant improved results compared with sequential scheduling heuristics.Keywords: production and outbound distribution, integrated planning, heuristic, decomposition, integration
Procedia PDF Downloads 42933358 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach
Authors: Brandtner-Hafner Martin
Abstract:
Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis
Procedia PDF Downloads 30533357 Triple Diffusive Convection in a Vertically Oscillating Oldroyd-B Liquid
Authors: Sameena Tarannum, S. Pranesh
Abstract:
The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.Keywords: gravity modulation, Oldroyd-b liquid, triple diffusive convection, venezian approach
Procedia PDF Downloads 17633356 Performance Evaluation and Dear Based Optimization on Machining Leather Specimens to Reduce Carbonization
Authors: Khaja Moiduddin, Tamer Khalaf, Muthuramalingam Thangaraj
Abstract:
Due to the variety of benefits over traditional cutting techniques, the usage of laser cutting technology has risen substantially in recent years. Hot wire machining can cut the leather in the required shape by controlling the wire by generating thermal energy. In the present study, an attempt has been made to investigate the effects of performance measures in the hot wire machining process on cutting leather specimens. Carbonization and material removal rates were considered as quality indicators. Burning leather during machining might cause carbon particles, reducing product quality. Minimizing the effect of carbon particles is crucial for assuring operator and environmental safety, health, and product quality. Hot wire machining can efficiently cut the specimens by controlling the current through it. Taguchi- DEAR-based optimization was also performed in the process, which resulted in a required Carbonization and material removal rate. Using the DEAR approach, the optimal parameters of the present study were found with 3.7% prediction error accuracy.Keywords: cabronization, leather, MRR, current
Procedia PDF Downloads 6433355 Duo Lingo: Learning Languages through Play
Authors: Yara Bajnaid, Malak Zaidan, Eman Dakkak
Abstract:
This research explores the use of Artificial Intelligence in Duolingo, a popular mobile application for language learning. Duolingo's success hinges on its gamified approach and adaptive learning system, both heavily reliant on AI functionalities. The research also analyzes user feedback regarding Duolingo's AI functionalities. While a significant majority (70%) consider Duolingo a reliable tool for language learning, there's room for improvement. Overall, AI plays a vital role in personalizing the learning journey and delivering interactive exercises. However, continuous improvement based on user feedback can further enhance the effectiveness of Duolingo's AI functionalities.Keywords: AI, Duolingo, language learning, application
Procedia PDF Downloads 4833354 Developing Oral Communication Competence in a Second Language: The Communicative Approach
Authors: Ikechi Gilbert
Abstract:
Oral communication is the transmission of ideas or messages through the speech process. Acquiring competence in this area which, by its volatile nature, is prone to errors and inaccuracies would require the adoption of a well-suited teaching methodology. Efficient oral communication facilitates exchange of ideas and easy accomplishment of day-to-day tasks, by means of a demonstrated mastery of oral expression and the making of fine presentations to audiences or individuals while recognizing verbal signals and body language of others and interpreting them correctly. In Anglophone states such as Nigeria, Ghana, etc., the French language, for instance, is studied as a foreign language, being used majorly in teaching learners who have their own mother tongue different from French. The same applies to Francophone states where English is studied as a foreign language by people whose official language or mother tongue is different from English. The ideal approach would be to teach these languages in these environments through a pedagogical approach that properly takes care of the oral perspective for effective understanding and application by the learners. In this article, we are examining the communicative approach as a methodology for teaching oral communication in a foreign language. This method is a direct response to the communicative needs of the learner involving the use of appropriate materials and teaching techniques that meet those needs. It is also a vivid improvement to the traditional grammatical and audio-visual adaptations. Our contribution will focus on the pedagogical component of oral communication improvement, highlighting its merits and also proposing diverse techniques including aspects of information and communication technology that would assist the second language learner communicate better orally.Keywords: communication, competence, methodology, pedagogical component
Procedia PDF Downloads 26633353 Linguistic Trend in the Qur'anic Tafsir of 'Al Tahreer Wa Al Tanveer' by Sheikh Tahir Bin A'shur
Authors: Numan Hasan
Abstract:
We have tried to highlight the linguistic trend in the Qur’anic Tafsir of ‘Al Tahreer wa Al Tanveer’ by Sheikh Tahir Bin A’shur, the brightest linguistic commentator in the modern era. We have started studying the life of Bin A’shur and his contributions to the field of Qur’anic knowledge. We have also studied to focus on the linguistic approach of ‘Al Tahreer wa Al Tanveer’ and emphasized the importance of linguistic interpretations. We have tried to have a clear understanding about the features and characteristics of his Tafsir. We have also reflected on the methodological approach and linguistic reference of his interpretation. In the conclusion we presented the main results of a research.Keywords: Sheikh Tahir Bin A’shur, tafsir, linguistics, interpretation, Islamic studies
Procedia PDF Downloads 37633352 Using Genetic Algorithm to Organize Sustainable Urban Landscape in Historical Part of City
Authors: Shahab Mirzaean Mahabadi, Elham Ebrahimi
Abstract:
The urban development process in the historical urban context has predominately witnessed two main approaches: the first is the Preservation and conservation of the urban fabric and its value, and the second approach is urban renewal and redevelopment. The latter is generally supported by political and economic aspirations. These two approaches conflict evidently. The authors go through the history of urban planning in order to review the historical development of the mentioned approaches. In this article, various values which are inherent in the historical fabric of a city are illustrated by emphasizing on cultural identity and activity. In the following, it is tried to find an optimized plan which maximizes economic development and minimizes change in historical-cultural sites simultaneously. In the proposed model, regarding the decision maker’s intention, and the variety of functions, the selected zone is divided into a number of components. For each component, different alternatives can be assigned, namely, renovation, refurbishment, destruction, and change in function. The decision Variable in this model is to choose an alternative for each component. A set of decisions made upon all components results in a plan. A plan developed in this way can be evaluated based on the decision maker’s point of view. That is, interactions between selected alternatives can make a foundation for the assessment of urban context to design a historical-cultural landscape. A genetic algorithm (GA) approach is used to search for optimal future land use within the historical-culture landscape for a sustainable high-growth city.Keywords: urban sustainability, green city, regeneration, genetic algorithm
Procedia PDF Downloads 6933351 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 13033350 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 16233349 Examining the Impact of Training on Turnover Intention in Project-Based Organizations
Authors: Muhammad Safder Shafi, Uzma Javed, Tooba Qasim
Abstract:
The purpose of this paper is to find out the relationship between training and turnover intention in the presence of mediating variables promotion opportunities and job satisfaction among IT professionals in project based industry. It investigates the relationship directly between 1 independent variable training and dependent variable turnover intention. It also investigates the relationship between independent variable to the mediating variables and mediating variables to the turnover intention. Promotion opportunities and job satisfaction act as a mediator. The study sample comprised of 186 IT professionals from Pakistan, who work on different IT projects. Linear regression and Baron and Kenny approach were used to test the direct and mediated relationship between variables. The survey results demonstrated that job satisfaction fully mediate the relationship between promotion opportunities and turnover intention. Promotion opportunities fully mediate the relationship between employee training and job satisfaction. Promotion opportunities and job satisfaction mediates the relationship between training and turnover intention. The findings from the collected data may help top management to improve organizational strategies to cope up with improving different HR practices like training, pay structure and promotions in order to retain their workforce.Keywords: HCT, SET, career growth opportunities, job satisfaction, training, turnover intention
Procedia PDF Downloads 36033348 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 50233347 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 14733346 A Cluster Randomised Controlled Trial Investigating the Impact of Integrating Mass Drug Administration Treating Soil Transmitted Helminths with Mass Dog Rabies Vaccination in Remote Communities in Tanzania
Authors: Felix Lankester, Alicia Davis, Safari Kinung'hi, Catherine Bunga, Shayo Alkara, Imam Mzimbiri, Jonathan Yoder, Sarah Cleaveland, Guy H. Palmer
Abstract:
Achieving the London Declaration goal of a 90% reduction in neglected tropical diseases (NTDs) by 2030 requires cost-effective strategies that attain high and comprehensive coverage. The first objective of this trial was to assess the impact on cost and coverage of employing a novel integrative One Health approach linking two NTD control programs: mass drug administration (MDA) for soil-transmitted helminths in humans (STH) and mass dog rabies vaccination (MDRV). The second objective was to compare the coverage achieved by the MDA, a community-wide deworming intervention, with that of the existing national primary school-based deworming program (NSDP), with particular focus on the proportion of primary school-age children reached and their school enrolment status. Our approach was unconventional because, in line with the One Health approach to disease control, it coupled the responsibilities and resources of the Ministries responsible for human and animal health into one program with the shared aim of preventing multiple NTDs. The trial was carried out in hard-to-reach pastoral communities comprising 24 villages of the Ngorongoro District, Tanzania, randomly allocated to either Arm A (MDA and MDRV), Arm B (MDA only) or Arm C (MDRV only). Objective one: The percentage of people in each target village that received treatment through MDA in Arms A and B was 63% and 65%, respectively (χ2 = 1, p = 0.32). The percentage of dogs vaccinated in Arm A and C was 70% and 81%, respectively (χ2 =9, p = 0.003). It took 33% less time for a single person and a dog to attend the integrated delivery than two separate events. Cost per dose (including delivery) was lower under the integrated strategy, with delivery of deworming and rabies vaccination reduced by $0.13 (54%) and $0.85 (19%) per dose, respectively. Despite a slight reduction in the proportion of village dogs vaccinated in the integrated event, both the integrated and non-integrated strategies achieved the target threshold of 70% required to eliminate rabies. Objective two: The percentages of primary school age children enrolled in school that was reached by this trial (73%) and the existing NSDP (80%) were not significantly different (F = 0.9, p = 0.36). However, of the primary school age children treated in this trial, 46% were not enrolled in school. Furthermore, 86% of the people treated would have been outside the reach of the NSDP because they were not primary school age or were primary school age children not enrolled in school. The comparable reach, the substantial reductions in cost per dose delivered and the decrease in participants’ time support this integrated One Health approach to control multiple NTDs. Further, the recorded level of non-enrolment at primary school suggests that, in remote areas, school-based delivery strategies could miss a large fraction of school-age children and that programs that focus delivery solely at the level of the primary school will miss a substantial proportion of both primary school age children as well as other individuals from the community. We have shown that these populations can be effectively reached through extramural programs.Keywords: canine mediated human rabies, integrated health interventions, mass drug administration, neglected tropical disease, One Health, soil-transmitted helminths
Procedia PDF Downloads 18133345 New Approach for Melanoma Skin Cancer Controled Releasing Drugs for Neutron Capture Therapy: A Review
Authors: Lucas Bernardes Naves, Luis Almeida
Abstract:
The paper includes a review concerning the use of some composites including poly(lactide-co-glycolide) (PGLA), zeolite and Gadopentetic acid (Gd-DTPA) loaded chitosan nanoparticles (Gd-nanoCPs) in order to establish a new alternative for the treatment of Melanoma Skin Cancer. The main goal of this paper it to make a review of what scientist have done in the last few years, as well as to propose a less invasive therapy for skin cancer, by using Hydrocolloid, based on PLGA coated with Gd-nanoCPs for Neutron Capture Therapy.Keywords: cancer therapy, dressing polymers, melanoma, wound healing
Procedia PDF Downloads 49233344 Accentuation Moods of Blaming Utterances in Egyptian Arabic: A Pragmatic Study of Prosodic Focus
Authors: Reda A. H. Mahmoud
Abstract:
This paper investigates the pragmatic meaning of prosodic focus through four accentuation moods of blaming utterances in Egyptian Arabic. Prosodic focus results in various pragmatic meanings when the speaker utters the same blaming expression in different emotional moods: the angry, the mocking, the frustrated, and the informative moods. The main objective of this study is to interpret the meanings of these four accentuation moods in relation to their illocutionary forces and pre-locutionary effects, the integrated features of prosodic focus (e.g., tone movement distributions, pitch accents, lengthening of vowels, deaccentuation of certain syllables/words, and tempo), and the consonance between the former prosodic features and certain lexico-grammatical components to communicate the intentions of the speaker. The data on blaming utterances has been collected via elicitation and pre-recorded material, and the selection of blaming utterances is based on the criteria of lexical and prosodic regularity to be processed and verified by three computer programs, Praat, Speech Analyzer, and Spectrogram Freeware. A dual pragmatic approach is established to interpret expressive blaming utterance and their lexico-grammatical distributions into intonational focus structure units. The pragmatic component of this approach explains the variable psychological attitudes through the expressions of blaming and their effects whereas the analysis of prosodic focus structure is used to describe the intonational contours of blaming utterances and other prosodic features. The study concludes that every accentuation mood has its different prosodic configuration which influences the listener’s interpretation of the pragmatic meanings of blaming utterances.Keywords: pragmatics, pragmatic interpretation, prosody, prosodic focus
Procedia PDF Downloads 15333343 Childhood Adversity and Delinquency in Youth: Self-Esteem and Depression as Mediators
Authors: Yuhui Liu, Lydia Speyer, Jasmin Wertz, Ingrid Obsuth
Abstract:
Childhood adversities refer to situations where a child's basic needs for safety and support are compromised, leading to substantial disruptions in their emotional, cognitive, social, or neurobiological development. Given the prevalence of adversities (8%-39%), their impact on developmental outcomes is challenging to completely avoid. Delinquency is an important consequence of childhood adversities, given its potential causing violence and other forms of victimisation, influencing victims, delinquents, their families, and the whole of society. Studying mediators helps explain the link between childhood adversity and delinquency, which aids in designing effective intervention programs that target explanatory variables to disrupt the path and mitigate the effects of childhood adversities on delinquency. The Dimensional Model of Adversity and Psychopathology suggests that threat-based adversities influence outcomes through emotion processing, while deprivation-based adversities do so through cognitive mechanisms. Thus, considering a wide range of threat-based and deprivation-based adversities and their co-occurrence and their associations with delinquency through cognitive and emotional mechanisms is essential. This study employs the Millennium Cohort Study, tracking the development of approximately 19,000 individuals born across England, Scotland, Wales and Northern Ireland, representing a nationally representative sample. Parallel mediation models compare the mediating roles of self-esteem (cognitive) and depression (affective) in the associations between childhood adversities and delinquency. Eleven types of childhood adversities were assessed both individually and through latent class analysis, considering adversity experiences from birth to early adolescence. This approach aimed to capture how threat-based, deprived-based, or combined threat and deprived-based adversities are associated with delinquency. Eight latent classes were identified: three classes (low adversity, especially direct and indirect violence; low childhood and moderate adolescent adversities; and persistent poverty with declining bullying victimisation) were negatively associated with delinquency. In contrast, three classes (high parental alcohol misuse, overall high adversities, especially regarding household instability, and high adversity) were positively associated with delinquency. When mediators were included, all classes showed a significant association with delinquency through depression, but not through self-esteem. Among the eleven single adversities, seven were positively associated with delinquency, with five linked through depression and none through self-esteem. The results imply the importance of affective variables, not just for threat-based but also deprivation-based adversities. Academically, this suggests exploring other mechanisms linking adversities and delinquency since some adversities are linked through neither depression nor self-esteem. Clinically, intervention programs should focus on affective variables like depression to mitigate the effects of childhood adversities on delinquency.Keywords: childhood adversity, delinquency, depression, self-esteem
Procedia PDF Downloads 3233342 Understanding Beginning Writers' Narrative Writing with a Multidimensional Assessment Approach
Authors: Huijing Wen, Daibao Guo
Abstract:
Writing is thought to be the most complex facet of language arts. Assessing writing is difficult and subjective, and there are few scientifically validated assessments exist. Research has proposed evaluating writing using a multidimensional approach, including both qualitative and quantitative measures of handwriting, spelling and prose. Given that narrative writing has historically been a staple of literacy instruction in primary grades and is one of the three major genres Common Core State Standards required students to acquire starting in kindergarten, it is essential for teachers to understand how to measure beginning writers writing development and sources of writing difficulties through narrative writing. Guided by the theoretical models of early written expression and using empirical data, this study examines ways teachers can enact a comprehensive approach to understanding beginning writer’s narrative writing through three writing rubrics developed for a Curriculum-based Measurement (CBM). The goal is to help classroom teachers structure a framework for assessing early writing in primary classrooms. Participants in this study included 380 first-grade students from 50 classrooms in 13 schools in three school districts in a Mid-Atlantic state. Three writing tests were used to assess first graders’ writing skills in relation to both transcription (i.e., handwriting fluency and spelling tests) and translational skills (i.e., a narrative prompt). First graders were asked to respond to a narrative prompt in 20 minutes. Grounded in theoretical models of earlier expression and empirical evidence of key contributors to early writing, all written samples to the narrative prompt were coded three ways for different dimensions of writing: length, quality, and genre elements. To measure the quality of the narrative writing, a traditional holistic rating rubric was developed by the researchers based on the CCSS and the general traits of good writing. Students' genre knowledge was measured by using a separate analytic rubric for narrative writing. Findings showed that first-graders had emerging and limited transcriptional and translational skills with a nascent knowledge of genre conventions. The findings of the study provided support for the Not-So-Simple View of Writing in that fluent written expression, measured by length and other important linguistic resources measured by the overall quality and genre knowledge rubrics, are fundamental in early writing development. Our study echoed previous research findings on children's narrative development. The study has practical classroom application as it informs writing instruction and assessment. It offered practical guidelines for classroom instruction by providing teachers with a better understanding of first graders' narrative writing skills and knowledge of genre conventions. Understanding students’ narrative writing provides teachers with more insights into specific strategies students might use during writing and their understanding of good narrative writing. Additionally, it is important for teachers to differentiate writing instruction given the individual differences shown by our multiple writing measures. Overall, the study shed light on beginning writers’ narrative writing, indicating the complexity of early writing development.Keywords: writing assessment, early writing, beginning writers, transcriptional skills, translational skills, primary grades, simple view of writing, writing rubrics, curriculum-based measurement
Procedia PDF Downloads 7633341 Calibration of Resistance Factors for Reliability-Based Design of Driven Piles Considering Unsaturated Soil Effects
Authors: Mohammad Amin Tutunchian, Pedram Roshani, Reza Rezvani, Julio Ángel Infante Sedano
Abstract:
The highly recommended approach to design, known as the load and resistance factor design (LRFD) method, employs the geotechnical resistance factor (GRF) for shaping pile foundation designs. Within the standard process for designing pile foundations, geotechnical engineers commonly adopt a design strategy rooted in saturated soil mechanics (SSM), often disregarding the impact of unsaturated soil behavior. This oversight within the design procedure leads to the omission of the enhancement in shear strength exhibited by unsaturated soils, resulting in a more cautious outcome in design results. This research endeavors to present a methodology for fine-tuning the GRF used for axially loaded driven piles in Winnipeg, Canada. This is achieved through the application of a well-established probabilistic approach known as the first-order second moment (FOSM) method while also accounting for the influence of unsaturated soil behavior. The findings of this study demonstrate that incorporating the influence of unsaturated conditions yields an elevation in projected bearing capacity and recommends higher GRF values in accordance with established codes. Additionally, a novel factor referred to as phy has been introduced to encompass the impact of saturation conditions in the calculation of pile bearing capacity, as guided by prevalent static analysis techniques.Keywords: unsaturated soils, shear strength, LRFD, FOSM, GRF
Procedia PDF Downloads 8833340 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 14733339 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 23333338 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography
Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz
Abstract:
Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology
Procedia PDF Downloads 22133337 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 7333336 An AI-generated Semantic Communication Platform in HCI Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of human-computer interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology, and more. Our HCI courses, named the Media and Cognition course, are constantly updated to reflect state-of-the-art technological advancements such as virtual reality, augmented reality, and artificial intelligence-based interactions. For more than a decade, our course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which have gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. Our latest version of the Human-Computer Interaction course practices a semantic communication platform based on AI-generated techniques. The purpose of this semantic communication is twofold: to extract and transmit task-specific information while ensuring efficient end-to-end communication with minimal latency. An AI-generated semantic communication platform evaluates the retention of signal sources and converts low-retain ability visual signals into textual prompts. These data are transmitted through AI-generated techniques and reconstructed at the receiving end; on the other hand, visual signals with a high retain ability rate are compressed and transmitted according to their respective regions. The platform and associated research are a testament to our students' growing ability to independently investigate state-of-the-art technologies.Keywords: human-computer interaction, media and cognition course, semantic communication, retainability, prompts
Procedia PDF Downloads 11633335 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal
Authors: Basanta Raj Adhikari
Abstract:
Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.Keywords: community, earthquake, landslides, Nepal
Procedia PDF Downloads 15633334 Analyzing Water Waves in Underground Pumped Storage Reservoirs: A Combined 3D Numerical and Experimental Approach
Authors: Elena Pummer, Holger Schuettrumpf
Abstract:
By today underground pumped storage plants as an outstanding alternative for classical pumped storage plants do not exist. They are needed to ensure the required balance between production and demand of energy. As a short to medium term storage pumped storage plants have been used economically over a long period of time, but their expansion is limited locally. The reasons are in particular the required topography and the extensive human land use. Through the use of underground reservoirs instead of surface lakes expansion options could be increased. Fulfilling the same functions, several hydrodynamic processes result in the specific design of the underground reservoirs and must be implemented in the planning process of such systems. A combined 3D numerical and experimental approach leads to currently unknown results about the occurring wave types and their behavior in dependence of different design and operating criteria. For the 3D numerical simulations, OpenFOAM was used and combined with an experimental approach in the laboratory of the Institute of Hydraulic Engineering and Water Resources Management at RWTH Aachen University, Germany. Using the finite-volume method and an explicit time discretization, a RANS-Simulation (k-ε) has been run. Convergence analyses for different time discretization, different meshes etc. and clear comparisons between both approaches lead to the result, that the numerical and experimental models can be combined and used as hybrid model. Undular bores partly with secondary waves and breaking bores occurred in the underground reservoir. Different water levels and discharges change the global effects, defined as the time-dependent average of the water level as well as the local processes, defined as the single, local hydrodynamic processes (water waves). Design criteria, like branches, directional changes, changes in cross-section or bottom slope, as well as changes in roughness have a great effect on the local processes, the global effects remain unaffected. Design calculations for underground pumped storage plants were developed on the basis of existing formulae and the results of the hybrid approach. Using the design calculations reservoirs heights as well as oscillation periods can be determined and lead to the knowledge of construction and operation possibilities of the plants. Consequently, future plants can be hydraulically optimized applying the design calculations on the local boundary conditions.Keywords: energy storage, experimental approach, hybrid approach, undular and breaking Bores, 3D numerical approach
Procedia PDF Downloads 21333333 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters
Authors: B. SahaRoy, T. Medhi, S. C. Saha
Abstract:
To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow
Procedia PDF Downloads 52133332 Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels
Authors: Lin-Lin Liu, Song-Qi Hu, Yin Wang
Abstract:
Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres.Keywords: graphene oxide, paraffin-based fuels, oxidation, activation energy, TGA
Procedia PDF Downloads 40233331 From Cascade to Cluster School Model of Teachers’ Professional Development Training Programme: Nigerian Experience, Ondo State: A Case Study
Authors: Oloruntegbe Kunle Oke, Alake Ese Monica, Odutuyi Olubu Musili
Abstract:
This research explores the differing effectiveness of cascade and cluster models in professional development programs for educators in Ondo State, Nigeria. The cascade model emphasizes a top-down approach, where training is cascaded from expert trainers to lower levels of teachers. In contrast, the cluster model, a bottom-up approach, fosters collaborative learning among teachers within specific clusters. Through a review of the literature and empirical studies of the implementations of the former in two academic sessions followed by the cluster model in another two, the study examined their effectiveness on teacher development, productivity and students’ achievements. The study also drew a comparative analysis of the strengths and weaknesses associated with each model, considering factors such as scalability, cost-effectiveness, adaptability in various contexts, and sustainability. 2500 teachers from Ondo State Primary Schools participated in the cascade with intensive training in five zones for a week each in two academic sessions. On the other hand, 1,980 and 1,663 teachers in 52 and 34 clusters, respectively, were in the first and the following session. The programs were designed for one week of rigorous training of teachers by facilitators in the former while the latter was made up of four components: sit-in-observation, need-based assessment workshop, pre-cluster and the actual cluster meetings in addition to sensitization, and took place one day a week for ten weeks. Validated Cluster Impact Survey Instruments, CISI and Teacher’s Assessment Questionnaire (TAQ) were administered to ascertain the effectiveness of the models during and after implementation. The findings from the literature detailed specific effectiveness, strengths and limitations of each approach, especially the potential for inconsistencies and resistance to change. Findings from the data collected revealed the superiority of the cluster model. Response to TAQ equally showed content knowledge and skill update in both but were more sustained in the cluster model. Overall, the study contributes to the ongoing discourse on effective strategies for improving teacher training and enhancing student outcomes, offering practical recommendations for the development and implementation of future professional development projects.Keywords: cascade model, cluster model, teachers’ development, productivity, students’ achievement
Procedia PDF Downloads 4533330 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination
Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley
Abstract:
Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids
Procedia PDF Downloads 79