Search results for: computing network control systems
19826 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 13819825 Study and Simulation of a Dynamic System Using Digital Twin
Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli
Abstract:
Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models
Procedia PDF Downloads 14819824 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 14219823 Enabling Enterprise Information System Interoperability: A Future Perspective
Authors: Mahdi Alkaeed, Adeel Ehsan
Abstract:
Enterprise information systems (EIS) act as the backbone of organizations that belong to different domains. These systems not only play a major role in the efficient usage of resources and time but also throw light on the future roadmap for the enterprise. In today's rapidly expanding world of business and technology, enterprise systems from various heterogenous environments have to exchange information at some point, be it within the same organization or between different organizations. This reality strengthens the importance of interoperability between these systems, which is one of the key enablers of systems collaboration. Both information technology infrastructure and business processes have to be aligned with each other to achieve this effect. This will be difficult to attain if traditional tightly coupled architecture is used. Instead, a more loosely coupled service-oriented architecture has to be used. That would enable an effective interoperability level between different EIS. This paper discusses and presents the current work that has been done in the field of EIS interoperability. Along the way, it also discusses the challenges, solutions to tackle those challenges presented in the studied literature, and limitations, if any.Keywords: enterprise systems interoperability, collaboration and integration, service-based architecture, open system architecture
Procedia PDF Downloads 11219822 Advancements in Smart Home Systems: A Comprehensive Exploration in Electronic Engineering
Authors: Chukwuka E. V., Rowling J. K., Rushdie Salman
Abstract:
The field of electronic engineering encompasses the study and application of electrical systems, circuits, and devices. Engineers in this discipline design, analyze and optimize electronic components to develop innovative solutions for various industries. This abstract provides a brief overview of the diverse areas within electronic engineering, including analog and digital electronics, signal processing, communication systems, and embedded systems. It highlights the importance of staying abreast of advancements in technology and fostering interdisciplinary collaboration to address contemporary challenges in this rapidly evolving field.Keywords: smart home engineering, energy efficiency, user-centric design, security frameworks
Procedia PDF Downloads 8719821 Real Time Implementation of Efficient DFIG-Variable Speed Wind Turbine Control
Authors: Fayssal Amrane, Azeddine Chaiba, Bruno Francois
Abstract:
In this paper, design and experimental study based on Direct Power Control (DPC) of DFIG is proposed for Stand-alone mode in Variable Speed Wind Energy Conversion System (VS-WECS). The proposed IDPC method based on robust IP (Integral-Proportional) controllers in order to control the Rotor Side Converter (RSC) by the means of the rotor current d-q axes components (Ird* and Irq*) of Doubly Fed Induction Generator (DFIG) through AC-DC-AC converter. The implementation is realized using dSPACE dS1103 card under Sub and Super-synchronous operations (means < and > of the synchronous speed “1500 rpm”). Finally, experimental results demonstrate that the proposed control using IP provides improved dynamic responses, and decoupled control of the wind turbine has driven DFIG with high performances (good reference tracking, short response time and low power error) despite for sudden variation of wind speed and rotor references currents.Keywords: Direct Power Control (DPC), Doubly fed induction generator (DFIG), Wind Energy Conversion System (WECS), Experimental study.
Procedia PDF Downloads 12619820 Influence of Error Correction Codes on the Quality of Optical Broadband Connections
Authors: Mouna Hemdi, Jamel bel Hadj Tahar
Abstract:
The increasing development of multimedia applications requiring the simultaneous transport of several different services contributes to the evolution of the need for very high-speed network. In this paper, we propose an effective solution to achieve the very high speed while retaining elements of the optical transmission channel. So our study focuses on error correcting codes that aim for quality improvement on duty. We present a comparison of the quality of service for single channels and integrating the code BCH, RS and LDPC in order to find the best code in the different conditions of the transmission.Keywords: code error correction, high speed broadband, optical transmission, information systems security
Procedia PDF Downloads 39319819 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems
Authors: Mojtaba Saeedinezhad, Sarah Yousefi
Abstract:
In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making
Procedia PDF Downloads 34619818 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities
Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou
Abstract:
Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.Keywords: accessibility, cycling, green spaces, spatial data, urban environment
Procedia PDF Downloads 11119817 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 15719816 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 7719815 Financing Innovation: Differences across National Innovation Systems
Authors: Núria Arimany Serrat, Xavier Ferràs Hernández, Petra A. Nylund, Eric Viardot
Abstract:
Innovation is an increasingly important antecedent to firm competitiveness and growth. Successful innovation, however, requires a significant financial commitment and the means of financing accessible to the firm may affect its ability to innovate. The access to equity financing such as venture capital has been connected to innovativeness for young firms. For established enterprises, debt financing of innovation may be a more realistic option. Continuous innovation and growth would otherwise require a constant increase of equity. We, therefore, investigate the relation between debt financing and innovation for large firms and hypothesize that those firms that carry more debt will be more innovative. The need for debt financing of innovation may be reduced for very profitable firms, which can finance innovation with cash flow. We thus hypothesize a moderating effect of profitability on the relationship between debt financing and innovation. We carry out an empirical investigation using a longitudinal data set including 167 large European firms over five years, resulting in 835 firm years. We apply generalized least squares (GLS) regression with fixed firm effects to control for firm heterogeneity. The findings support our hypotheses and we conclude that access to debt finding is an important antecedent of innovation, with profitability as a moderating factor. The results do however differ across national innovation systems and we find a strong relationship for British, Dutch, French, and Italian firms but not for German and Spanish entities. We discuss differences in the national systems of innovation and financing which contextualize the variations in the findings and thus make a nuanced contribution to the research in innovation financing. The cross-country differences calls for differentiated advice to managers, institutions, and researchers depending on the national context.Keywords: innovation, R&D, national innovation systems, financing
Procedia PDF Downloads 53119814 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures
Procedia PDF Downloads 40019813 Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System
Authors: Leo Latasch, Mario Di Gennaro
Abstract:
Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.Keywords: coordination, disaster, resilience, volunteers
Procedia PDF Downloads 14219812 Effect of vr Based Wii Fit Training on Muscle Strength, Sensory Integration Ability and Walking Abilities in Patients with Parkinson's Disease: A Randomized Control Trial
Authors: Ying-Yi Laio, Yea-Ru Yang, Yih-Ru Wu, Ray-Yau Wang
Abstract:
Background: Virtual reality (VR) systems are proved to increase motor performance in stroke and elderly. However, the effects have not been established in patients with Parkinson’s disease (PD). Purpose: To examine the effects of VR based training in improving muscle strength, sensory integration ability and walking abilities in patients with PD by a randomized controlled trial. Method: Thirty six participants with diagnosis of PD were randomly assigned to one of the three groups (n=12 for each group). Participants received VR-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by treadmill training for another 15 minutes for 12 sessions in 6 weeks. Participants in the control group received no structured exercise program but fall-prevention education. Outcomes included lower extremity muscle strength, sensory integration ability, walking velocity, stride length, and functional gait assessment (FGA). All outcomes were assessed at baseline, after training and at 1-month follow-up. Results: Both VRWii and TE groups showed more improvement in level walking velocity, stride length, FGA, muscle strength and vestibular system integration than control group after training and at 1-month follow-up. The VRWii training, but not the TE training, resulted in more improvement in visual system integration than the control. Conclusions: VRWii training is as beneficial as traditional exercise in improving walking abilities, sensory integration ability and muscle strength in patients with PD, and such improvements persisted at least for 1 month. The VRWii training is then suggested to be implemented in patients with PD.Keywords: virtual reality, walking, sensory integration, muscle strength, Parkinson’s disease
Procedia PDF Downloads 33019811 A Multi-agent System Framework for Stakeholder Analysis of Local Energy Systems
Authors: Mengqiu Deng, Xiao Peng, Yang Zhao
Abstract:
The development of local energy systems requires the collective involvement of different actors from various levels of society. However, the stakeholder analysis of local energy systems still has been under-developed. This paper proposes an multi-agent system (MAS) framework to facilitate the development of stakeholder analysis of local energy systems. The framework takes into account the most influencing stakeholders, including prosumers/consumers, system operators, energy companies and government bodies. Different stakeholders are modeled based on agent architectures for example the belief-desire-intention (BDI) to better reflect their motivations and interests in participating in local energy systems. The agent models of different stakeholders are then integrated in one model of the whole energy system. An illustrative case study is provided to elaborate how to develop a quantitative agent model for different stakeholders, as well as to demonstrate the practicability of the proposed framework. The findings from the case study indicate that the suggested framework and agent model can serve as analytical instruments for enhancing the government’s policy-making process by offering a systematic view of stakeholder interconnections in local energy systems.Keywords: multi-agent system, BDI agent, local energy systems, stakeholders
Procedia PDF Downloads 8719810 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 19419809 Interoperability Model Design of Smart Grid Power System
Authors: Seon-Hack Hong, Tae-Il Choi
Abstract:
Interoperability is defined as systems, components, and devices developed by different entities smoothly exchanging information and functioning organically without mutual consultation, being able to communicate with each other and computer systems of the same type or different types, and exchanging information or the ability of two or more systems to exchange information and use the information exchanged without extra effort. Insufficiencies such as duplication of functions when developing systems and applications due to lack of interoperability in the electric power system and low efficiency due to a lack of mutual information transmission system between the inside of the application program and the design is improved, and the seamless linkage of newly developed systems is improved. Since it is necessary to secure interoperability for this purpose, we designed the smart grid-based interoperability standard model in this paper.Keywords: interoperability, power system, common information model, SCADA, IEEE2030, Zephyr
Procedia PDF Downloads 12419808 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 4719807 Working Mode and Key Technology of Thermal Vacuum Test Software for Spacecraft Test
Authors: Zhang Lei, Zhan Haiyang, Gu Miao
Abstract:
A universal software platform is developed for improving the defects in the practical one. This software platform has distinct advantages in modularization, information management, and the interfaces. Several technologies such as computer technology, virtualization technology, network technology, etc. are combined together in this software platform, and four working modes are introduced in this article including single mode, distributed mode, cloud mode, and the centralized mode. The application area of the software platform is extended through the switch between these working modes. The software platform can arrange the thermal vacuum test process automatically. This function can improve the reliability of thermal vacuum test.Keywords: software platform, thermal vacuum test, control and measurement, work mode
Procedia PDF Downloads 41519806 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 9819805 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics
Authors: Eugene Y. C. Wong
Abstract:
The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics
Procedia PDF Downloads 37419804 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 27419803 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 8019802 Sustainable Urban Sewer Systems as Stormwater Management and Control Mechanisms
Authors: Ezequiel Garcia-Rodriguez, Lenin Hernandez-Ferreyra, Luis Ochoa-Franco
Abstract:
The Sustainable Sewer Urban Systems (SSUS) are mechanisms integrated into the cities for manage rain water, reducing its runoff volume and velocity, enhancing the rain water quality and preventing flooding and other catastrophes associated to the rain, as well as improving the energy efficiency. The objective of SSUS is to mimic or to equal the runoff and infiltration natural conditions of the land before its urbanization, reducing runoff that may cause troubles within the houses, as well as flooding. At the same time, energy for warming homes and for pumping and treating water is reduced, contributing to the reduction of CO₂ emissions and therefore contributing to reduce the climate change. This paper contains an evaluation of the advantages that SSUS may offer within a zone of Morelia City, Mexico, applying support tools for decision making. The hydrological conditions prior to and after the urbanization of the study area were analyzed to propose the recommended SSUS. Different types of SSUS were proposed in this case study, assessing their effect on the rainwater flow behavior within the study area. SSUS usage in this case resulted, positively, in an important reduction of the magnitude and velocity of runoff, reducing therefore the risk of flooding. So that, it is recommended the implementation of SSUS in this case.Keywords: energy efficiency, morelia, sustainablesewer, urban systems
Procedia PDF Downloads 6319801 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6
Authors: Yaser Miaji, Mohammed Aloryani
Abstract:
The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.Keywords: traffic classification, IPv6, internet, application categorization
Procedia PDF Downloads 56519800 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques
Procedia PDF Downloads 33219799 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters
Procedia PDF Downloads 14919798 A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles
Authors: Mbadiwe S. Benyeogor, Oladayo O. Olakanmi, Kosisochukwu P. Nnoli, Olusegun I. Lawal, Eric JJ. Gratton
Abstract:
For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation.Keywords: active suspension, autonomous robots, edge computing, navigational sensors, terramechanics
Procedia PDF Downloads 15419797 Conservation Challenges of Wetlands Biodiversity in Northeast Region of Bangladesh
Authors: Anisuzzaman Khan, A. J. K. Masud
Abstract:
Bangladesh is the largest delta in the world predominantly comprising large network of rives and wetlands. Wetlands in Bangladesh are represented by inland freshwater, estuarine brakishwater and tidal salt-water coastal wetlands. Bangladesh possesses enormous area of wetlands including rivers and streams, freshwater lakes and marshes, haors, baors, beels, water storage reservoirs, fish ponds, flooded cultivated fields and estuarine systems with extensive mangrove swamps. The past, present, and future of Bangladesh, and its people’s livelihoods are intimately connected to its relationship with water and wetlands. More than 90% of the country’s total area consists of alluvial plains, crisscrossed by a complex network of rivers and their tributaries. Floodplains, beels (low-lying depressions in the floodplain), haors (deep depression) and baors (oxbow lakes) represent the inland freshwater wetlands. Over a third of Bangladesh could be termed as wetlands, considering rivers, estuaries, mangroves, floodplains, beels, baors and haors. The country’s wetland ecosystems also offer critical habitats for globally significant biological diversity. Of these the deeply flooded basins of north-east Bangladesh, known as haors, are a habitat of wide range of wild flora and fauna unique to Bangladesh. The haor basin lies within the districts of Sylhet, Sunamgonj, Netrokona, Kishoregonj, Habigonj, Moulvibazar, and Brahmanbaria in the Northeast region of Bangladesh comprises the floodplains of the Meghna tributaries and is characterized by the presence of numerous large, deeply flooded depressions, known as haors. It covers about around 8,568 km2 area of Bangladesh. The topography of the region is steep at around foothills in the north and slopes becoming mild and milder gradually at downstream towards south. Haor is a great reservoir of aquatic biological resources and acts as the ecological safety net to the nature as well as to the dwellers of the haor. But in reality, these areas are considered as wastelands and to make these wastelands into a productive one, a one sided plan has been implementing since long. The programme is popularly known as Flood Control, Drainage and Irrigation (FCDI) which is mainly devoted to increase the monoculture rice production. However, haor ecosystem is a multiple-resource base which demands an integrated sustainable development approach. The ongoing management approach is biased to only rice production through FCDI. Thus this primitive mode of action is diminishing other resources having more economic potential ever thought.Keywords: freshwater wetlands, biological diversity, biological resources, conservation and sustainable development
Procedia PDF Downloads 329