Search results for: data management system
39071 Reverse Logistics Information Management Using Ontological Approach
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
Reverse Logistics (RL) Process is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails, and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies, on the other hand, can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper, we propose a semantic representation based on hybrid architecture for building the Ontologies in an ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems (ICT) that support reverse logistics Processes and product data.Keywords: Reverse Logistics, information management, heterogeneity, ontologies, semantic web
Procedia PDF Downloads 49239070 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory
Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam
Abstract:
Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry
Procedia PDF Downloads 37339069 Modification of a Human Powered Lawn Mower
Authors: Akinwale S. O., Koya O. A.
Abstract:
The need to provide ecologically-friendly and effective lawn mowing solution is crucial for the well-being of humans. This study involved the modification of a human-powered lawn mower designed to cut tall grasses in residential areas. This study designed and fabricated a reel-type mower blade system and a pedal-powered test rig for the blade system. It also evaluated the performance of the machine. The machine was tested on some overgrown grass plots at College of Education Staff School Ilesa. Parameters such as theoretical field capacity, field efficiency and effective field capacity were determined from the data gathered. The quality of cut achieved by the unit was also documented. Test results showed that the fabricated cutting system produced a theoretical field capacity of 0.11 ha/h and an effective field capacity of 0.08ha/h. Moreover, the unit’s cutting system showed a substantial improvement over existing reel mower designs in its ability to cut on both the forward and reverse phases of its motion. This study established that the blade system described herein has the capacity to cut tall grasses. Hence, this device can therefore eliminate the need for powered mowers entirely on small residential lawns.Keywords: effective field capacity, field efficiency, theoretical field capacity, quality of cut
Procedia PDF Downloads 14739068 Adaptive E-Learning System Using Fuzzy Logic and Concept Map
Authors: Mesfer Al Duhayyim, Paul Newbury
Abstract:
This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list
Procedia PDF Downloads 29339067 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 4039066 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 28439065 Evaluation of Vehicle Classification Categories: Florida Case Study
Authors: Ren Moses, Jaqueline Masaki
Abstract:
This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic
Procedia PDF Downloads 18139064 A Workable Mechanism to Support Students Who Are at Risk
Authors: Mohamed Chabi
Abstract:
The project of helping students at risk started at the Math department in the new foundation program at Qatar University in the fall 2012 semester. The purpose was to find ways to help students who were struggling with their math courses Elementary algebra or Precalculus course due to many factors. Department had formed the Committee “students at Risk” at the start of 12-13 to assist struggling students in our math courses to get their studies on track. A mechanism was developed to support students who are at risk using a developed E-Monitoring system. E-Monitoring system was developed to manage automatically all transactions relevant to the students’ attendance, Students ‘‘warning Students’’ grading, etc. E-Monitoring System produce various statistics such as, Overall course statistics, Performance, Students at Risk… to help department to develop a higher quality of education in the Foundation Program at Math department. The mechanism was studies and evaluated. Whatever the cause, the sooner we identify students who are not performing well academically, the sooner we can provide, or direct them to the resources that are available to them. In this paper, we outline the mechanism and its effect on students’ performance. The collected data from various exams shows that students had benefited from the mechanism.Keywords: students at risk, e-monitoring system, warning students, performance
Procedia PDF Downloads 48839063 A Goal-Oriented Social Business Process Management Framework
Authors: Mohammad Ehson Rangiha, Bill Karakostas
Abstract:
Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goal-based role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization.Keywords: business process management, goal-based modelling, process recommendation social collaboration, social BPM
Procedia PDF Downloads 49439062 Reimagining the Learning Management System as a “Third” Space
Authors: Christina Van Wingerden
Abstract:
This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.Keywords: COVID-19, isolation, learning management system, sense of belonging
Procedia PDF Downloads 11239061 Estimating Soil Erosion Using Universal Soil Loss Equation and Gis in Algash Basin
Authors: Issamaldin Mohammed, Ahmed Abdalla, Hatim Elobied
Abstract:
Soil erosion is globally known for adverse effects on social, environmental and economical aspects which directly or indirectly influence the human life. The area under study suffers from problems like water quality, river and agricultural canals bed rise due to high sediment load brought by Algash River from upstream (Eritrea high land), the current study utilized from remote sensing and Geographical Information System (GIS) to estimate the annual soil loss using Universal Soil Loss Equation (USLE). The USLE is widely used over the world which basically relies on rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), cover management factor (C) and support practice factor (P). The result of the study showed high soil loss in the study area, this result was illustrated in a form of map presenting the spatial distribution of soil loss amounts which classified into seven zones ranging from very slight zone (less than 2 ton/ha.year) to very severe (100-500 ton/ha.year), also the total soil loss from the whole study area was found to be 32,916,840.87 ton/ha.year. These kinds of results will help the experts of land management to give a priority for the severely affected zones to be tackled in an appropriate way.Keywords: Geographical Information System, remote sensing, sedimentation, soil loss
Procedia PDF Downloads 28839060 Assessing the Impact of Covid-19 Pandemic on Waste Management Workers in Ghana
Authors: Mensah-Akoto Julius, Kenichi Matsui
Abstract:
This paper examines the impact of COVID-19 on waste management workers in Ghana. A questionnaire survey was conducted among 60 waste management workers in Accra metropolis, the capital region of Ghana, to understand the impact of the COVID-19 pandemic on waste generation, workers’ safety in collecting solid waste, and service delivery. To find out correlations between the pandemic and safety of waste management workers, a regression analysis was used. Regarding waste generation, the results show the pandemic led to the highest annual per capita solid waste generation, or 3,390 tons, in 2020. Regarding the safety of workers, the regression analysis shows a significant and inverse association between COVID-19 and waste management services. This means that contaminated wastes may infect field workers with COVID-19 due to their direct exposure. A rise in new infection cases would have a negative impact on the safety and service delivery of the workers. The result also shows that an increase in economic activities negatively impacts waste management workers. The analysis, however, finds no statistical relationship between workers’ service deliveries and employees’ salaries. The study then discusses how municipal waste management authorities can ensure safe and effective waste collection during the pandemic.Keywords: Covid-19, waste management worker, waste collection, Ghana
Procedia PDF Downloads 20439059 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions
Authors: Tesfaye Mengistu
Abstract:
This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission
Procedia PDF Downloads 8439058 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 15739057 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems
Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed
Abstract:
This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis
Procedia PDF Downloads 7539056 Digital Immunity System for Healthcare Data Security
Authors: Nihar Bheda
Abstract:
Protecting digital assets such as networks, systems, and data from advanced cyber threats is the aim of Digital Immunity Systems (DIS), which are a subset of cybersecurity. With features like continuous monitoring, coordinated reactions, and long-term adaptation, DIS seeks to mimic biological immunity. This minimizes downtime by automatically identifying and eliminating threats. Traditional security measures, such as firewalls and antivirus software, are insufficient for enterprises, such as healthcare providers, given the rapid evolution of cyber threats. The number of medical record breaches that have occurred in recent years is proof that attackers are finding healthcare data to be an increasingly valuable target. However, obstacles to enhancing security include outdated systems, financial limitations, and a lack of knowledge. DIS is an advancement in cyber defenses designed specifically for healthcare settings. Protection akin to an "immune system" is produced by core capabilities such as anomaly detection, access controls, and policy enforcement. Coordination of responses across IT infrastructure to contain attacks is made possible by automation and orchestration. Massive amounts of data are analyzed by AI and machine learning to find new threats. After an incident, self-healing enables services to resume quickly. The implementation of DIS is consistent with the healthcare industry's urgent requirement for resilient data security in light of evolving risks and strict guidelines. With resilient systems, it can help organizations lower business risk, minimize the effects of breaches, and preserve patient care continuity. DIS will be essential for protecting a variety of environments, including cloud computing and the Internet of medical devices, as healthcare providers quickly adopt new technologies. DIS lowers traditional security overhead for IT departments and offers automated protection, even though it requires an initial investment. In the near future, DIS may prove to be essential for small clinics, blood banks, imaging centers, large hospitals, and other healthcare organizations. Cyber resilience can become attainable for the whole healthcare ecosystem with customized DIS implementations.Keywords: digital immunity system, cybersecurity, healthcare data, emerging technology
Procedia PDF Downloads 6739055 Investigation of TEC Using YOUTHSAT RaBIT Payload Data for Low Latitude Regions
Authors: Perumalla Naveen Kumar
Abstract:
Global Positioning System (GPS) is used for civilian and military user positioning applications. The accuracy of GPS is degrading mainly because of ionospheric error. It is very important to analyze the effects of ionosphere on the performance of satellite systems especially in the low latitude regions. These variations depend on the Total Electron Content (TEC) in the ionosphere. To investigate the variations in the atmosphere, a mini satellite known as YOUTHSAT is launched by India. This is the outcome of the collaboration between India and USSR. One of the YOUTHSAT Indian payload is RaBIT (Radio Beacon for Ionospheric Tomography). In this paper, YOUTHSAT RaBIT payload data for the three typical days of 2011 are considered. The analysis is carried out for four Indian stations. The variations of Slant TEC, elevation angle and azimuth angles are analyzed with respect to local time. The obtained results are encouraging.Keywords: Global Positioning System (GPS), Total Electron Content (TEC), YOUTHSAT, Radio Beacon for Ionospheric Tomography (RaBIT)
Procedia PDF Downloads 38439054 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion
Authors: Hantian Wu, Bo Huang, Yuan Zeng
Abstract:
Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management
Procedia PDF Downloads 12539053 Set-point Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electro-Hydraulic Servo System
Authors: Maria Ahmadnezhad, Seyedgharani Ghoreishi
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the set-point performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired set-point performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia PDF Downloads 100439052 The Methodology of System Modeling of Mechatronic Systems
Authors: Lakhoua Najeh
Abstract:
Aims of the work: After a presentation of the functionality of an example of a mechatronic system which is a paint mixer system, we present the concepts of modeling and safe operation. This paper briefly discusses how to model and protect the functioning of a mechatronic system relying mainly on functional analysis and safe operation techniques. Methods: For the study of an example of a mechatronic system, we use methods for external functional analysis that illustrate the relationships between a mechatronic system and its external environment. Thus, we present the Safe-Structured Analysis Design Technique method (Safe-SADT) which allows the representation of a mechatronic system. A model of operating safety and automation is proposed. This model enables us to use a functional analysis technique of the mechatronic system based on the GRAFCET (Graphe Fonctionnel de Commande des Etapes et Transitions: Step Transition Function Chart) method; study of the safe operation of the mechatronic system based on the Safe-SADT method; automation of the mechatronic system based on a software tool. Results: The expected results are to propose a model and safe operation of a mechatronic system. This methodology enables us to analyze the relevance of the different models based on Safe-SADT and GRAFCET in relation to the control and monitoring functions and to study the means allowing exploiting their synergy. Conclusion: In order to propose a general model of a mechatronic system, a model of analysis, safety operation and automation of a mechatronic system has been developed. This is how we propose to validate this methodology through a case study of a paint mixer system.Keywords: mechatronic systems, system modeling, safe operation, Safe-SADT
Procedia PDF Downloads 24539051 Development of Modular Shortest Path Navigation System
Authors: Nalinee Sophatsathit
Abstract:
This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management.Keywords: navigation systems, shortest path, smartphone technology, user navigation guide
Procedia PDF Downloads 33839050 Numerical Solution of Space Fractional Order Solute Transport System
Authors: Shubham Jaiswal
Abstract:
In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system
Procedia PDF Downloads 26139049 Practical Experiences as Part of Project Management Course
Authors: H. Hussain, N. H. Mohamad
Abstract:
Practical experiences have been one of the successful criteria for the Project Management course for the art and design students. There are series of events that the students have to undergo as part of their practical exercises in the learning context for Project Management courses. These series have been divided into few mini programs that involved the whole individual in each group. Therefore, the events have been one of the bench marks for these students. Through the practical experience, the task that has been given to individual has been performed according to the needs of professional practice and ethics.Keywords: practical experience, project management, art and design students, events, programs
Procedia PDF Downloads 55739048 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 8739047 Development of Intelligent Smart Multi Tracking Agent System to Support of Logistics Safety
Authors: Umarov Jamshid, Ju-Su Kim, Hak-Jun Lee, Man-Kyo Han, Ryum-Duck Oh
Abstract:
Recently, it becomes convenient to identify the location information of cargos by using GPS and wireless communication technologies. The development of IoT technologies and tracking system allows us to confirm site situation on an ad hoc basis in all the industries and social environments. Moreover, it allows us to apply IT technologies to a manageable extent. However, there have been many limitations for using the system due to the difficulty of identifying location information in real time and also due to the simple features. To globalize the logistics related tracking system, it is required to conduct a study to resolve the aforementioned problem. On that account, this paper designed and developed the IoT and RTLS based intelligent multi tracking agent system for more secure, accurate and reliable transportation in relation to logistics.Keywords: GPS, tracking agent system, IoT, RTLS, Logistics
Procedia PDF Downloads 64639046 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items
Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci
Abstract:
An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.Keywords: METRIC, inventory management, irregular demand, spare parts
Procedia PDF Downloads 34839045 Financial Portfolio Optimization in Electricity Markets: Evaluation via Sharpe Ratio
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity plays an indispensable role in human life and the economy. It is a unique product or service that must be balanced instantaneously, as electricity is not stored, generation and consumption should be proportional. Effective and efficient use of electricity is very important not only for society, but also for the environment. A competitive electricity market is one of the best ways to provide a suitable platform for effective and efficient use of electricity. On the other hand, it carries some risks that should be carefully managed by the market players. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Markowitz’s Mean-variance, Down-side and Semi-variance methods for a case study. Performance of optimal electricity sale solutions are measured and evaluated via Sharpe-Ratio, and the optimal portfolio solutions are improved. Two years of historical weekdays’ price data of the Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management in electricity market, sharpe ratio
Procedia PDF Downloads 36539044 Talent Management by Employee Involvement in Healthcare Industries of India: An Analytical Case Study
Authors: Alpa Mehta
Abstract:
Talent acquisition, development, and retention are major issues encountered in the health care industries in any country. Recent authentic data showed that employee turnover in the field of health care is increasing day by day compare to other industrial sectors. There are many reasons behind retention issues. One of such can be the lack of involvement and engagement of health workers in day to day HRM. Health care is a noble profession and employee has to deal with the patient with the optimum level of satisfaction and productivity. So employee morale and motivation should be high. This area of concern is mostly ignored by management, and ultimately it turns into dissatisfaction and abandonment in search of other jobs. The paper analyses the HRM tools to retain healthcare employee with high moral through employee involvement. The paper includes the case study of One of the Prominent Health care institute of India has found out a way to retain talented employees in the organization with the tool of employee engagement.Keywords: employee involvement, health care industry, human resources management, talent retention
Procedia PDF Downloads 45639043 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland
Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi
Abstract:
Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.Keywords: ecosystem, business model, personal data, preventive healthcare
Procedia PDF Downloads 24939042 The Enlightenment of the Ventilation System in Chinese Traditional Residence to Architecture Design
Authors: Wu Xingchun, Chen Xi
Abstract:
Nowadays, China's building energy consumption constitutes 25% of the total energy consumption, half of which was caused by air conditioning in both summer and winter. The ventilation system in Chinese traditional residence, which is totally passive and environmentally friendly, works effectively to create comfortable indoor environment. The research on the ventilation system in Chinese traditional residence can provide advancements to architecture design and energy savings to the society. Through field investigation, case analysis, strategy proposing and other methods, it comes out that the location and layout, the structure system and the design of atrium are the most important elements for a good ventilation system. Taking every factor into consideration, techniques are deployed extensively such as the organization of draught, the design of the thermal pressure ventilation system and the application of modern materials. With the enlightenment of the ventilation system in Chinese traditional residence, we can take effective measures to achieve low energy consumption and sustainable architecture.Keywords: ventilation system, chinese traditional residence, energy consumption, sustainable architecture
Procedia PDF Downloads 707