Search results for: transitional cell carcinoma
3744 Effect of Environmental Conditions on the Substrate Cu(In,Ga)Se2 Solar Cell Performances
Authors: Mekhannene Amine
Abstract:
In this paper, we began in the first step by two-dimensional simulation of a CIGS solar cell, in order to increase the current record efficiency of 20.48% for a single CIGS cell. Was created by utilizing a set of physical and technological parameters a solar cell of reference (such as layer thicknesses, gallium ratio, doping levels and materials properties) documented in bibliography and very known in the experimental field. This was accomplished through modeling and simulation using Atlas SILVACO-TCAD, an tool two and three dimensions very powerful and very adapted. This study has led us to determine the influence of different environmental parameters such as illumination (G) and temperature (T). In the second step, we continued our study by determining the influence of physical parameters (the acceptor of concentration NA) and geometric (thickness t) of the CIGS absorber layer, were varied to produce an optimum efficiency of 24.36%. This approach is promising to produce a CIGS classic solar cell to conduct a maximum performance.Keywords: solar cell, cigs, photovoltaic generator, illumination, temperature, Atlas SILVACO-TCAD
Procedia PDF Downloads 6453743 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence
Authors: H. Mazouz, A. Belghachi, F. Hadjaj
Abstract:
Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit
Procedia PDF Downloads 4753742 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network
Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 5053741 Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell
Authors: Chadel Meriem, Bensmaine Souhila, Chadel Asma, Bouchikhi Chaima
Abstract:
The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer.Keywords: methylammonium lead Iodide, perovskite solar cell, caracteristic J-V, effeciency
Procedia PDF Downloads 713740 TP53 Mutations in Molecular Subtypes of Breast Cancer in Young Pakistani Patients
Authors: Nadia Naseem, Farwa Batool, Nasir Mehmood, AbdulHannan Nagi
Abstract:
Background: The incidence and mortality of breast cancer vary significantly in geographically distinct populations. In Pakistan, breast cancer has shown an increase in incidence in young females and is characterized by more aggressive behavior. The tumor suppressor TP53 gene is a crucial genetic factor that plays a significant role in breast carcinogenesis. This study investigated the TP53 mutations in molecular subtypes of both nodes negative and positive breast cancer in young Pakistani patients. Material and Methods: p53, Estrogen Receptor (ER), Progesterone Receptor (PR), Her-2 neu and Ki 67 expressions were analyzed immunohistochemically in a series of 75 node negative (A) and 75 node positive (B) young (aged: 19-40 years) breast cancer patients diagnosed between 2014 to 2017 at two leading hospitals of Punjab, Pakistan. Tumor tissue specimens and peripheral blood samples were examined for TP53 mutations by direct sequencing of the gene (exons 4-9). The relation of TP53 mutations to these markers and clinicopathological data was investigated. Results: Mean age of the patients was 32.4 + 9.1 SD. Invasive breast carcinoma was the most frequent histological variant (A=92%, B=94.6%). Grade 3 carcinoma was the commonest grade (A=72%, B=81.3%). Triple negative cases (ER-, PR-, Her-2) formed most of the molecular subtypes (A=44%, B=50.6%). A total of 17.2% (A: 6.6%, B: 10.6%) patients showed TP53 mutations. Mutations were significantly more frequent in triple negative cases (A: 74.8%, B: 62.2%) compared to HER2-positive patients (P < 0.0001). In the multivariate analysis of the whole patient group, the independent prognosticator were triple negative cases (P=0.021), TP53 overexpression by IHC (P=0.001) and advanced-stage disease (P=0.007). No statistically significant correlation between TP53 mutations and clinicopathological parameters was found (P < 0.05). Conclusions: It is concluded that TP53 mutations are infrequently present in breast carcinoma of young Pakistani population and there was no significant correlation between p53 mutation and early onset disease. Immunohistochemically detected TP53 expression in our resource-constrained to set up can be beneficial in predicting mutations at the younger age in our population.Keywords: immunohistochemistry (IHC), invasive breast carcinoma (IBC), Pakistan, TP53
Procedia PDF Downloads 1593739 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening
Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang
Abstract:
In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems
Procedia PDF Downloads 1293738 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane
Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu
Abstract:
A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced
Procedia PDF Downloads 2943737 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria
Authors: Shittu Ahmed Tajudeen
Abstract:
This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model
Procedia PDF Downloads 4553736 Low Temperature Solution Processed Solar Cell Based on ITO/PbS/PbS:Bi3+ Heterojunction
Authors: M. Chavez, H. Juarez, M. Pacio, O. Portillo
Abstract:
PbS chemical bath heterojunction sollar cells have shown significant improvements in performance. Here we demonstrate a solar cell based on the heterojunction formed between PbS layer and PbS:Bi3+ thin films that are deposited via solution process at 40°C. The device achieve an current density of 4 mA/cm2. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.Keywords: PbS doped, Bismuth, solar cell, thin films
Procedia PDF Downloads 5533735 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells
Authors: Ross Lee, Pritpal Singh, Andrew Jester
Abstract:
As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, new battery technology is necessary for grid applications to curtail these risks. Biological cells, such as human neurons and electrolytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell, akin to the charging/discharging of a battery cell. This work serves as the first step to developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na⁺-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior similar to human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.Keywords: battery, biomimetic, electrolytes, human neurons, ion-selective membranes, membrane potential
Procedia PDF Downloads 1193734 Hsa-miR-326 Functions as a Tumor Suppressor in Non-Small Cell Lung Cancer through Targeting CCND1
Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li
Abstract:
Hsa-miRNA-326 (miR-326) has recently been discovered having anticancer efficacy in different organs. However, the role of miR-326 on non-small cell lung cancer (NSCLC) is still ambiguous. In this study, we investigated the role of miR-326 on the development of NSCLC. The results indicated that miR-326 was significantly down-regulated in primary tumor tissues and very low levels were found in NSCLC cell lines. Ectopic expression of miR-326 in NSCLC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4, and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-326 induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-326 inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene CCND1 was revealed to be a putative target of miR-326, which was inversely correlated with miR-326 expression in NSCLC. Taken together, our results demonstrated that miR-326 played a pivotal role on NSCLC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic CCND1.Keywords: hsa-miRNA-326 (miR-326), cyclin D1, non-small cell lung cancer (NSCLC), proliferation, apoptosis
Procedia PDF Downloads 3073733 Low Power CNFET SRAM Design
Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor
Abstract:
CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.Keywords: SRAM cell, CNFET, low power, HSPICE
Procedia PDF Downloads 4163732 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram
Authors: Chonmapat Torasa
Abstract:
This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.Keywords: solar cell, solar-cell power generating system, computer, systems engineering
Procedia PDF Downloads 3263731 Laser Based Microfabrication of a Microheater Chip for Cell Culture
Authors: Daniel Nieto, Ramiro Couceiro
Abstract:
Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.Keywords: laser microfabrication, microheater, bioengineering, cell culture
Procedia PDF Downloads 2973730 In vitro Study on Characterization and Viability of Vero Cell Lines after Supplementation with Porcine Follicular Fluid Proteins in Culture Medium
Authors: Mayuva Youngsabanant, Suphaphorn Rabiab, Hatairuk Tungkasen, Nongnuch Gumlungpat, Mayuree Pumipaiboon
Abstract:
The porcine follicular fluid proteins (pFF) of healthy small size ovarian follicles (1-3 mm in diameters) of Large White pig ovaries were collected by sterile technique. They were used for testing the effect on cell viability and characterization of Vero cell lines using MTT assay. Two hundred microliter of round shape Vero cell lines were culture in 96 well plates with DMEM for 24 h. After that, they were attachment to substrate and some changed into fibroblast shape and spread over the surface after culture for 48 h. Then, Vero cell lines were treated with pFF at concentration of 2, 4, 20, 40, 200, 400, 500, and 600 µg proteins/mL for 24 h. Yields of the best results were analyzed by using one-way ANOVA. MTT assay reviewed an increasing in percentage of viability of Vero cell lines indicated that at concentration of 400-600 µg proteins/mL showed higher percentage of viability (115.64 ± 6.95, 106.91 ± 5.27 and 116.73 ± 20.15) than control group. They were significantly different from the control group (p < 0.05) but lower than the positive control group (DMEM with 10% heat treated fetal bovine serum). Cell lines showed normal character in fibroblast elongate shape after treated with pFF except in high concentration of pFF. This result implies that pFF of small size ovarian follicle at concentration of 400-600 µg proteins/mL could be optimized concentration for using as a supplement in Vero cell line culture medium to promote cell viability instead of growth hormone from fetal bovine serum. This merit could be applied in other cell biotechnology researches. Acknowledgements: This work was funded by a grant from Silpakorn University and Faculty of Science, Silpakorn University, Thailand.Keywords: cell viability, porcine follicular fluid, MTT assay, Vero cell line
Procedia PDF Downloads 1343729 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application
Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang
Abstract:
A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance
Procedia PDF Downloads 5113728 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material
Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex
Abstract:
Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency
Procedia PDF Downloads 853727 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication
Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu
Abstract:
Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.Keywords: aristolochic acid, kidney, microRNA, swine
Procedia PDF Downloads 2853726 Hsa-miR-329 Functions as a Tumor Suppressor through Targeting MET in Non-Small Cell Lung Cancer
Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li
Abstract:
MicroRNAs (miRNAs) act as key regulators of multiple cancers. Hsa-miR-329 (miR-329) functions as a tumor suppressor in some malignancies. However, its role on lung cancer remains poorly understood. In this study, we investigated the role of miR-329 on the development of lung cancer. The results indicated that miR-329 was decreased in primary lung cancer tissues compared with matched adjacent normal lung tissues and very low levels were found in a non-small cell lung cancer (NSCLC) cell lines. Ectopic expression of miR-329 in lung cancer cell lines substantially repressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibiting cyclin D1, cyclin D2, and up-regulatiing p57(Kip2) and p21(WAF1/CIP1). In addition, miR-329 promoted NSCLC cell apoptosis, as indicated by up-regulation of key apoptosis gene cleaved caspase-3, and down-regulation of anti-apoptosis gene Bcl2. Moreover, miR-329 inhibited cellular migration and invasiveness through inhibiting matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene MET was revealed to be a putative target of miR-329, which was inversely correlated with miR-329 expression. Furthermore, down-regulation of MET by siRNA performed similar effects to over-expression of miR-329. Collectively, our results demonstrated that miR-329 played a pivotal role in lung cancer through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic MET.Keywords: hsa-miRNA-329(miR-329), MET, non-small cell lung cancer (NSCLC), proliferation, apoptosis
Procedia PDF Downloads 4103725 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration
Authors: Sujatha Edla
Abstract:
Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic
Procedia PDF Downloads 633724 Ill-Defined and Ill-Equipped: Understanding the Limits of the Concept of Truth in South Africa’S Truth and Reconciliation Commission
Authors: Keo Mbebe
Abstract:
The South African Truth and Reconciliation Commission (TRC) is widely regarded as a blueprint for countries seeking to transcend the atrocities of their past and create a new human rights-based administration. The aim of these societies is to establish historical truth. Within the TRC, the aspects of truth-finding and truth-telling were considered to be catalysts for national unity and reconciliation. Truth-seeking, in addition, was mandated in the Promotion of National Unity and Reconciliation Act (TRC Act), which is the legislation behind the TRC. However, there is an incongruency between the conception of truth outlined in the Act, and the conception of truth explained in the Report of the TRC proceedings. The aim of this paper is to delineate these two kinds of “truth” and to critically analyze them. Doing so, it will then be evident in the discussion that there is a need for substantial clarity in the conception of truth used in transitional justice settings based on truth-finding and truth-seeking, and the paper will present ways in which such clarity may be achieved. The paper will begin with a philosophical engagement on the notion of historical truth used by the TRC legislation. Thereafter, the historical background to the political context in which the TRC Act was mandated will be provided. The next section would then be a sketch of the conceptions of historical truth and historical injustice in the Act, as well as its supporting documents. Lastly, it will be argued that the subversion of the TRC’s mandate to promote reconciliation and national unity by bringing to light past human rights violations during apartheid is betrayed by its amorphous conception of historical truth.Keywords: historical truth, human rights, transitional justice, truth commission
Procedia PDF Downloads 1853723 The Role of Interpersonal and Institutional Trusts for the Public Support of Welfare State
Authors: Nazim Habibov, Alena Auchynnikava, Lida Fan
Abstract:
The exploration of the relationship between social trust and the support of the welfare system in transitional countries has attracted growing interests in recent decades. This study estimates the effects of interpersonal and institutional trust on the support of the welfare system in 27 countries in Eastern Europe the former Soviet Union. We estimate the data sets from the Life-in-Transition Survey 2010 and 2016 with binomial regression models. The results indicate that both interpersonal and institutional trust have positive effects on the support for the welfare system in all the three areas under investigation: helping the needy, public healthcare and public education, both in the less developed countries of the former Soviet Union and in the more developed Eastern European countries. Furthermore, the positive effects of interpersonal and institutional trust on support for helping the needy, public healthcare and public education were found to grow over time. In conclusion, this study confirms that interpersonal and institutional trusts have positive effects for the public support of the welfare system in these transitional countries under investigation, regardless of their level of development.Keywords: central and eastern Europe, former Soviet union, international social welfare policy, comparative social welfare policy
Procedia PDF Downloads 1323722 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective
Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah
Abstract:
In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 3413721 An Overview of Paclitaxel as an Anti-Cancer Agent in Avoiding Malignant Metastatic Cancer Therapy
Authors: Nasrin Hosseinzad, Ramin Ghasemi Shayan
Abstract:
Chemotherapy is the most common procedure in the treatment of advanced cancers but is justsoberlyoperativeand toxic. Nevertheless, the efficiency of chemotherapy is restrictedowing to multiple drug resistance(MDR). Lately, plentiful preclinical experiments have revealedthatPaclitaxel-Curcumin could be an ultimateapproach to converse MDR and synergistically increase their efficiency. The connotationsamongst B-cell-lymphoma2(BCL-2) and multi-drug-resistance-associated-P-glycoprotein(MDR1) consequence of patients forecast the efficiency of paclitaxel-built chemoradiotherapy. There are evidences of the efficacy of paclitaxel in the treatment of surface-transmission of bladder-cell-carcinoma by manipulating bio-adhesive microspheres accomplishedthroughout measured release of drug at urine epithelium. In Genetically-Modified method, muco-adhesive oily constructionoftricaprylin, Tween 80, and paclitaxel group showed slighter toxicity than control in therapeutic dose. Postoperative chemotherapy-Paclitaxel might be more advantageous for survival than adjuvant chemo-radio-therapy, and coulddiminish postoperative complications in cervical cancer patients underwent a radical hysterectomy.HA-Se-PTX(Hyaluronic acid, Selenium, Paclitaxel) nanoparticles could observablyconstrain the proliferation, transmission, and invasion of metastatic cells and apoptosis. Furthermore, they exhibitedvast in vivo anti-tumor effect. Additionally, HA-Se-PTX displayedminor toxicity on mice-chef-organs. Briefly, HA-Se-PTX mightprogress into a respectednano-scale agentinrespiratory cancers. To sum up, Paclitaxel is considered a profitable anti-cancer drug in the treatment and anti-progress symptoms in malignant cancers.Keywords: cancer, paclitaxel, chemotherapy, tumor
Procedia PDF Downloads 1323720 Assessment of Solar Hydrogen Production in Energetic Hybrid PV-PEMFC System
Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui
Abstract:
This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.Keywords: electrolyzer, hydrogen, hydrogen fueled cell, photovoltaic
Procedia PDF Downloads 4923719 Cytotoxic Activity of Marine-derived Fungi Trichoderma Longibrachiatum Against PANC-1 Cell Lines
Authors: Elin Julianti, Marlia Singgih, Masayoshi Arai, Jianyu Lin, Masteria Yunovilsa Putra, Muhammad Azhari, Agnia S. Muharam
Abstract:
The search for a source of new medicinal compounds with anticancer activity from natural products has become important to resolve the ineffectiveness problem of pancreatic cancer therapy. Fungal marine microorganisms are prolific sources of bioactive natural products. In this present study, the ethyl acetate extract of cultured broth of Trichoderma longibrachiatum marine sponge-derived fungi exhibited selective cytotoxicity against human pancreatic carcinoma PANC-1 cells cultured under glucose-deficient conditions (IC50 = 98,4 µg/mL). The T. longibrachiatum was fermented by the static method at room temperature for 60 days. The culture broth was extracted using ethyl acetate by liquid-liquid extraction method. The liquid-liquid extraction was conducted toward the ethyl extract by using 90% MeOH-H₂O and n-|Hexane as a solvent. The extract of 90% MeOH-H₂O was fractionated by liquid extraction using by C₁₈ reversed-phase vacuum flash chromatography using mixtures of MeOH-H₂O, from 50:50 to 100:0, and 1% TFA MeOH as the eluents to yield six fractions. The fraction 2 (MeOH-H2O, 70:30) and fraction 3 (MeOH-H2O, 80:20) showed moderate cytotoxicity with IC50 value of 119.3 and 274.7 µg/mL, respectively. Fraction 4 (MeOH-H₂O, 90:10) showed the highest cytotoxicity activity with IC₅₀value of < 10 µg/mL. The chemical compounds of the fractions that are responsible for cytotoxic activity are potent for further investigation.Keywords: cytotoxic activity, trichoderma longibrachiatum, marine-derived fungi, PANC-1 cell line
Procedia PDF Downloads 2923718 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis
Authors: Mhaned Oubounyt, Jan Baumbach
Abstract:
Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks
Procedia PDF Downloads 1523717 Mitochondrial DNA Copy Number in Egyptian Patients with Hepatitis C Virus Related Hepatocellular Carcinoma
Authors: Doaa Hashad, Amany Elyamany, Perihan Salem
Abstract:
Introduction: Hepatitis C virus infection (HCV) constitutes a serious dilemma that has an impact on the health of millions of Egyptians. Hepatitis C virus related hepatocellular carcinoma (HCV-HCC) is a crucial consequence of HCV that represents the third cause of cancer-related deaths worldwide. Aim of the study: assess the use of mitochondrial DNA (mtDNA) content as a non-invasive molecular biomarker in hepatitis c virus related hepatocellular carcinoma (HCV-HCC). Methods: A total of 135 participants were enrolled in the study. Volunteers were assigned to one of three groups equally; a group of HCV related cirrhosis (HCV-cirrhosis), a group of HCV-HCC and a control group of age- and sex- matched healthy volunteers with no evidence of liver disease. mtDNA was determined using a quantitative real-time PCR technique. Results: mtDNA content was lowest in HCV-HCC cases. No statistically significant difference was observed between the group of HCV-cirrhosis and the control group as regards mtDNA level. HCC patients with multi-centric hepatic lesions had significantly lower mtDNA content. On using receiver operating characteristic curve analysis, a cutoff of 34 was assigned for mtDNA content to distinguish between HCV-HCC and HCV-cirrhosis patients who are not yet complicated by malignancy. Lower mtDNA was associated with greater HCC risk on using healthy controls, HCV-cirrhosis, or combining both groups as a reference group. Conclusions: mtDNA content might constitute a non-invasive molecular biomarker that reflects tumor burden in HCV-HCC cases and could be used as a predictor of HCC risk in patients of HCV-cirrhosis. In addition, the non significant difference of mtDNA level between HCV-cirrhosis patients and healthy controls could eliminate the grey zone created by the use of AFP in some cirrhotic patients.Keywords: DNA copy number, HCC, HCV, mitochondrial
Procedia PDF Downloads 3263716 Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting
Authors: Olubusuyi Ayowole, Bashir Khoda
Abstract:
Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise.Keywords: green bioprinting, 3d bioprinting, microalgae cell, hybrid hydrogel scaffolds, spectrophotometric analysis, bioink development, shear thinning properties
Procedia PDF Downloads 313715 Effects of Cell Phone Usage on Psychological Health of Students
Authors: Avadhesh Kumar
Abstract:
Background: The cell phone has rapidly become an integral, and, for some, an essential communication tool that is being used worldwide. Their use without any knowledge of their harmful effects like cancers and other health effects is not ‘quite’ safe. Studies on cancers due to electromagnetic radiations from cell phones are available, but there is a need to research on the detrimental physical and psychological effects on users like students. This study focused on certain psychological or mental health effects of cell phone usage amongst students. Materials and methods: The present study will be carried out on all the students of Banaras Hindu University. Students of both sexes from urban and rural backgrounds were selected at random and administered a pre- tested questionnaire which included aspects related to few common adverse psychological health signs and symptoms attributed to cell phone over-usage. Results: Stress was found to be the commonest symptom (51.47%) followed by irritability/anger (43.79%). Other common mental symptoms included lack of concentration and academic performance, insomnia, anxiety etc. Suggestions: This study confirms that the younger generation, who are the most frequent cell phone users, needs to be aware of the adverse health effects of cell phone usage especially the mental aspects and take preventive measures to minimize and control the same. Less dependence on the device, a curtailing time period spent on talking, communicating more by texting, etc. are some of the practical measures suggested.Keywords: cell phones, psychological health effects, students, mental health
Procedia PDF Downloads 311