Search results for: traditional knowledge resources classification
17263 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms
Procedia PDF Downloads 48417262 Understanding Tacit Knowledge and Its Role in Military Organizations: Methods of Managing Tacit Knowledge
Authors: M. Erhan Orhan, Onur Ozdemir
Abstract:
Expansion of area of operation and increasing diversity of threats forced the military organizations to change in many ways. However, tacit knowledge still is the most fundamental component of organizational knowledge. Since it is human oriented and in warfare human stands at the core of the organization. Therefore, military organizations should find effective ways of systematically utilizing tacit knowledge. In this context, this article suggest some methods for turning tacit knowledge into explicit in military organizations.Keywords: tacit knowledge, military, knowledge management, warfare, technology
Procedia PDF Downloads 48817261 From Restraint to Obligation: The Protection of the Environment in Times of Armed Conflict
Authors: Aaron Walayat
Abstract:
Protection of the environment in international law has been one of the most developed in the context of international humanitarian law. This paper examines the history of the protection of the environment in times of armed conflict, beginning with the traditional notion of restraint observed in antiquity towards the obligation to protect the environment, examining the treaties and agreements, both binding and non-binding which have contributed to environmental protection in war. The paper begins with a discussion of the ancient concept of restraint. This section examines the social norms in favor of protection of the environment as observed in the Bible, Greco-Roman mythology, and even more contemporary literature. The study of the traditional rejection of total war establishes the social foundation on which the current legal regime has stemmed. The paper then studies the principle of restraint as codified in international humanitarian law. It mainly examines Additional Protocol I of the Geneva Convention of 1949 and existing international law concerning civilian objects and the principles of international humanitarian law in the classification between civilian objects and military objectives. The paper then explores the environment’s classification as both a military objective and as a civilian object as well as explores arguments in favor of the classification of the whole environment as a civilian object. The paper will then discuss the current legal regime surrounding the protection of the environment, discussing some declarations and conventions including the 1868 Declaration of St. Petersburg, the 1907 Hague Convention No. IV, the Geneva Conventions, and the 1976 Environmental Modification Convention. The paper concludes with the outline noting the movement from codification of the principles of restraint into the various treaties, agreements, and declarations of the current regime of international humanitarian law. This paper provides an analysis of the history and significance of the relationship between international humanitarian law as a major contributor to the growing field of international environmental law.Keywords: armed conflict, environment, legal regime, restraint
Procedia PDF Downloads 20417260 Effect of Incentives on Knowledge Sharing and Learning: Evidence from the Indian IT Sector
Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues
Abstract:
The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) program, thanks to their in-house technological abilities. This paper tries to study the various knowledge-based incentive programs and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM incentives, knowledge sharing, and learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.Keywords: knowledge management, knowledge management incentives, knowledge sharing, learning
Procedia PDF Downloads 47617259 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 5317258 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 7517257 Retrospective Data Analysis of Penetrating Injuries Admitted to Jigme Dorji Wangchuck National Referral Hospital (JDWNRH), Thimphu, Bhutan, Due to Traditional Sports over a Period of 3 Years
Authors: Sonam Kelzang
Abstract:
Background: Penetrating injuries as a result of traditional sports (Archery and Khuru) are commonly seen in Bhutan. To our knowledge, there is no study carried out looking into the data of penetrating injuries due to traditional sports. Aim: This is a retrospective analysis of cases of penetrating injuries as a result of traditional sports admitted to JDWNRH over the last 3 years to draw an inference on the pattern of injury and associated morbidity and mortality. Method: Data on penetrating injuries related to traditional sports (Archery and Khuru) were collected and reviewed over the period of 3 years. Assault cases were excluded. For each year we analysed age, sex, parts of the body affected, agent of injury and whether admission was required or not. Results: Out of the total 44 victims of penetrating injury by traditional sports (Archery and Khuru) between 2013 and 2015 (average of 15 cases of penetrating injuries per year). Eighty-five percent were male and 15% were female. Their age ranged from 4 yrs to 62 years. Sixty-one percent of the victims were in the working age group of 19-58 years; 30% of the victims were referred from various district hospitals; 38% of the victims needed admission; 42 % of the victims suffered injury to the head; and 54% of the injuries were caused by Khuru. Conclusion: Penetrating injuries due to traditional sports admitted to JDWNRH, Thimphu, remained same over the three years period despite safety regulations in place. Although there were no deaths during the last three years, morbidity still remains high.Keywords: archery, Bhutan, Khuru, darts
Procedia PDF Downloads 16617256 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 8817255 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 21317254 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System
Authors: Christian Luarca
Abstract:
The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.Keywords: cloud platform, e-Training, efficiency, onboarding
Procedia PDF Downloads 15017253 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 47817252 The Developing of Knowledge-Based System for the Medical Treatment with Herbs
Authors: Rujijan Vichivanives
Abstract:
This research aims to create a knowledge-based system as a database for self-healthcare analysis, diagnosis of simple illnesses, and the use of Thai herbs instead of modern medicine by using principles of Thai traditional medication theory. These were disseminated by website network programs within Suan Sunandha Rajabhat University. The population used in this study was divided into two groups: the first group consisted of four experts of Thai traditional medication and the second group was 300 website users. The methods used for collecting data were paper questionnaires and poll questionnaires on the website. The statistics used for analyzing data was at an average level. The results were divided into three parts: the first part was the development of a knowledge-based system and the second part was applied programs on website. Both parts could be fulfilled and achieved according to the set goal. The third part was the evaluation of the study: The evaluation of the viewpoints of the experts towards website designs were evaluated at a good level of 4.20. The satisfaction evaluation of the users was found at a good level of average satisfactory level at 4.24. It was found that the young population of those under the age of 16 had less cares about their health than the population of other teenagers, working age adults and those of older age. The research findings should be extended in order to encourage the lifestyle modifications to people of all ages by using the self-healthcare principles.Keywords: developing, herbs, knowledge-based system, medical treatment
Procedia PDF Downloads 33017251 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis
Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin
Abstract:
Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve
Procedia PDF Downloads 33717250 The Work System Method for Designing Knowledge Mobilization Projects
Authors: Chihab Benmoussa
Abstract:
Could the Work System Approach (WSA) function as a framework for designing high-impact knowledge mobilization systems? This paper put forward arguments in favor of the applicability of WSA for knowledge mobilization design based on evidences from a practical research. Normative approaches for practitioners are highly needed especially in the field of knowledge management (KM), given the abysmal rate of disappointment and failure of KM projects. The paper contrasts knowledge management and knowledge mobilization, presents the WSA and showed how the WSA’s concepts and ideas fit with the approach adopted by a multinational company in designing a successful knowledge mobilization initiative.Keywords: knowledge management, knowledge mobilizations, work system method
Procedia PDF Downloads 52317249 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 34817248 Management of Indigenous Knowledge: Expectations of Library and Information Professionals in Developing Countries
Authors: Desmond Chinedu Oparaku, Pearl C. Akanwa, Oyemike Victor Benson
Abstract:
This paper examines the challenges facing library and information centers (LICs) in managing indigenous knowledge in academic libraries in developing countries. The need for managing an indigenous knowledge in library and information centers in developing nations is becoming more critical. There is an ever increasing output of indigenous knowledge; effective management of indigenous knowledge becomes necessary to enable the next generation benefit from them. This paper thus explores the concept of indigenous knowledge (IK), nature of indigenous knowledge (IK), the various forms of indigenous knowledge (IK), sources of indigenous knowledge (IK), and relevance of indigenous knowledge (IK). The expectations of library and information professionals towards effective management of indigenous knowledge and the challenges to effective management of indigenous knowledge were highlighted. Recommendations were made based on the identified challenges.Keywords: library, indigenous knowledge, information centres, information professionals
Procedia PDF Downloads 42217247 Examining the Relationship Between Traditional Property Rights and Online Intellectual Property Rights in the Digital Age
Authors: Luljeta Plakolli-Kasumi
Abstract:
In the digital age, the relationship between traditional property rights and online intellectual property rights is becoming increasingly complex. On the one hand, the internet and advancements in technology have allowed for the widespread distribution and use of digital content, making it easier for individuals and businesses to access and share information. On the other hand, the rise of digital piracy and illegal file-sharing has led to increased concerns about the protection of intellectual property rights. This paper aims to examine the relationship between traditional property rights and online intellectual property rights in the digital age by analyzing the current legal frameworks, key challenges and controversies that arise, and potential solutions for addressing these issues. The paper will look at how traditional property rights concepts such as ownership and possession are being applied in the online context and how they intersect with new and evolving forms of intellectual property such as digital downloads, streaming services, and online content creation. It will also discuss the tension between the need for strong intellectual property protection to encourage creativity and innovation and the public interest in promoting access to information and knowledge. Ultimately, the paper will explore how the legal system can adapt to better balance the interests of property owners, creators, and users in the digital age.Keywords: intellectual property, traditional property, digital age, digital content
Procedia PDF Downloads 9017246 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 63817245 A Collaborative Platform for Multilingual Ontology Development
Authors: Ahmed Tawfik, Fausto Giunchiglia, Vincenzo Maltese
Abstract:
Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi, and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.Keywords: knowledge diversity, knowledge representation, ontology, development
Procedia PDF Downloads 39217244 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble
Procedia PDF Downloads 49217243 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 017242 The Impact of Corporate Social Responsibility and Knowledge Management Factors on University's Students' Learning Process
Authors: Naritphol Boonyakiat
Abstract:
This research attempts to investigate the effects of corporate social responsibility and knowledge management factors on students’ learning process of the Silpakorn University. The goal of this study is to fill the literature gap by gaining an understanding of corporate social responsibility and the knowledge management factors that fundamentally relate to students’ learning process within the university context. Thus, this study will focus on the outcomes that derive from a set of quantitative data that were obtained using Silpakorn university’s database of 200 students. The results represent the perceptions of students regarding the impact of corporate social responsibility and knowledge management factors on their learning process within the university. The findings indicate that corporate social responsibility and knowledge management have significant effects on students’ learning process. This study may assist us in gaining a better understanding of the integrated aspects of university and learning environments to discover how to allocate optimally university’s resources and management approaches to gain benefits from corporate social responsibility and knowledge management practices toward students’ learning process within the university bodies. Therefore, there is a sufficient reason to believe that the findings can contribute to research in the area of CSR, KM and students’ learning process as an essential aspect of university’s stakeholder.Keywords: corporate social responsibility, knowledge management, learning process, university’s students
Procedia PDF Downloads 31717241 Exploring the Traditional Uses of Aromatic Plants in Indonesian Culture, Medicine, and Spirituality
Authors: Aida Humaira
Abstract:
Aromatic plants hold an honored place in Indonesian culture, where they are deeply intertwined with everyday customs, rituals, and ceremonies. From the fragrant herbs and spices used in cooking to the aromatic incense burned in temples and homes, aromatic plants play multifaceted roles in enhancing well-being and fostering spiritual connections. These plants are valued not only for their pleasant aromas but also for their medicinal properties and symbolic meanings. This article aims to summarize the role of aromatic plants in Indonesian traditional culture, medicine, spirituality, and how it shifted to a modern version of aromatherapy. Traditional Indonesian medicine, known as Jamu, relies heavily on aromatic plants for their therapeutic benefits. Herbalists and traditional healers use a wide array of aromatic herbs, roots, barks, and resins to treat various ailments, ranging from digestive disorders and respiratory infections to skin conditions and reproductive issues. In conclusion, aromatic plants represent a cultural treasure with multifaceted uses and significance deeply rooted in Indonesia’s tradition. From their medicinal properties to their spiritual symbolism, these plants embody the interconnection of culture, nature, and well-being. Further research and collaboration are needed to document and preserve traditional knowledge surrounding Indonesian aromatic plants and ensure their continued recognition and sustainable utilization in the face of modernization and environmental challenges.Keywords: aromatic plants, indonesia, Jamu, traditional medicine
Procedia PDF Downloads 6017240 Sustainable Traditional Architecture and Urban Planning in Hot–Humid Climate of Iran
Authors: Farnaz Nazem
Abstract:
This paper concentrates on the sustainable traditional architecture and urban planning in hot-humid regions of Iran. In a vast country such as Iran with different climatic zones traditional builders have presented series of logical solutions for human comfort. The aim of this paper is to demonstrate traditional architecture in hot-humid climate of Iran as a sample of sustainable architecture. Iranian traditional architecture has been able to response to environmental problems for a long period of time. Its features are based on climatic factors, local construction materials of hot-humid regions and culture. This paper concludes that Iranian traditional architecture can be addressed as a sustainable architecture.Keywords: hot-humid climate, Iran, sustainable traditional architecture, urban planning
Procedia PDF Downloads 60717239 The Effect of Organizational Factors on Knowledge Sharing in the Jordanian Commercial Banks
Authors: Nadera Al Hourani
Abstract:
The study aimed at testing the effect of the organizational factors on reinforcing the knowledge sharing competence in the Jordanian commercial banks. The study population consisted of all the commercial banks working in Jordan according to the statistics of the Jordanian Banks Association by the end of 2010 (n=12). The researchers took a sample of the branch managers (n=240), and constructed a questionnaire to achieve the objective of the study. 235 questionnaires were returned and 16 were discarded due to incompleteness of their data, thus accepting 219 questionnaires. The results of the study indicated statistically significant effect of the organizational factors with their elements: (organizational structure, organizational culture, and human resources policy) in knowledge sharing. The study recommended that the Jordanian commercial banks have to continue attention to the organizational factors through supporting the less important variables and lowest means within the independent variable (organizational factors). The organizational structure came lowest, which urges the management of the commercial banks to adopt a flexible organizational structure capable to reinforce the knowledge sharing competence.Keywords: banks, Jordan, knowledge, organizational factors, sharing
Procedia PDF Downloads 33117238 Curriculum Check in Industrial Design, Based on Knowledge Management in Iran Universities
Authors: Maryam Mostafaee, Hassan Sadeghi Naeini, Sara Mostowfi
Abstract:
Today’s Knowledge management (KM), plays an important role in organizations. Basically, knowledge management is in the relation of using it for taking advantage of work forces in an organization for forwarding the goals and demand of that organization used at the most. The purpose of knowledge management is not only to manage existing documentation, information, and Data through an organization, but the most important part of KM is to control most important and key factor of those information and Data. For sure it is to chase the information needed for the employees in the right time of needed to take from genuine source for bringing out the best performance and result then in this matter the performance of organization will be at most of it. There are a lot of definitions over the objective of management released. Management is the science that in force the accurate knowledge with repeating to the organization to shape it and take full advantages for reaching goals and targets in the organization to be used by employees and users, but the definition of Knowledge based on Kalinz dictionary is: Facts, emotions or experiences known by man or group of people is ‘ knowledge ‘: Based on the Merriam Webster Dictionary: the act or skill of controlling and making decision about a business, department, sport team, etc, based on the Oxford Dictionary: Efficient handling of information and resources within a commercial organization, and based on the Oxford Dictionary: The art or process of designing manufactured products: the scale is a beautiful work of industrial design. When knowledge management performed executive in universities, discovery and create a new knowledge be facilitated. Make procedures between different units for knowledge exchange. College's officials and employees understand the importance of knowledge for University's success and will make more efforts to prevent the errors. In this strategy, is explored factors and affective trends and manage of it in University. In this research, Iranian universities for a time being analyzed that over usage of knowledge management, how they are behaving and having understood this matter: 1. Discovery of knowledge management in Iranian Universities, 2. Transferring exciting knowledge between faculties and unites, 3. Participate of employees for getting and using and transferring knowledge, 4.The accessibility of valid sources, 5. Researching over factors and correct processes in the university. We are pointing in some examples that we have already analyzed which is: -Enabling better and faster decision-making, -Making it easy to find relevant information and resources, -Reusing ideas, documents, and expertise, -Avoiding redundant effort. Consequence: It is found that effectiveness of knowledge management in the Industrial design field is low. Based on filled checklist by Education officials and professors in universities, and coefficient of effectiveness Calculate, knowledge management could not get the right place.Keywords: knowledge management, industrial design, educational curriculum, learning performance
Procedia PDF Downloads 37017237 Utilization of Learning Resources in Enhancing the Teaching of Science and Technology Courses in Post Primary Institutions in Nigeria
Authors: Isah Mohammed Patizhiko
Abstract:
This paper aimed at discussing the important role learning resources play in enhancing the teaching and learning of science and technology courses in post primary institution in Nigeria. The paper highlighted the importance learning resources contributed to the effective understanding of the learners. The use of learning resources in the teaching of these courses will encourage teachers to be more exploratory and the learners to have more understanding. In this paper, different range of learning resources particularly common learning resources (learning resources not design primarily for education purposes) to enrich their teaching. The paper also highlighted how ordinary resource can be turned into an educational resource. Recommendations were proffered in the sourcing of learning resources ie from the market, library, institutions, museums, and dump refuse and concluded that good demonstration on the use of resources will engage the learner’s interest and will develop higher level of conceptual understanding in the learning area.Keywords: enhance, learning, resources, science and technology, teaching
Procedia PDF Downloads 39817236 Genetic Algorithm Optimization of Multiple Resources for Multi-Projects
Authors: A. Samer Ezeldin, Sarah A. Fotouh
Abstract:
Optimization of resources is very important in all fields, as in construction management. Project managers have to face problems regarding management of cost, time and available resources of single projects and more problems arise when managing multiple projects. Most of the studies focused on optimization of resources for a single project, but, this paper will discuss the design and modeling of multiple resources optimization for multiple projects using Genetic Algorithm. Most of the companies in construction industry optimize the resources for single projects only, but with the presence of several mega projects in several developing countries running at the same time, there is a need for a model to enhance the efficiency of available resources and decreases the fluctuation as much as possible. The proposed model calculates the cost of each resource, tries to minimize the cost of extra resources as much as possible and generates the schedule of each project within a selected program.Keywords: construction management, genetic algorithm, multiple projects, multiple resources, optimization
Procedia PDF Downloads 45917235 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents
Authors: Prasanna Haddela
Abstract:
Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm
Procedia PDF Downloads 11417234 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier
Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral
Abstract:
With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.Keywords: audio classification, audio extraction, environment mobile, musical information retrieval
Procedia PDF Downloads 545