Search results for: optimization for learning and data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 46782

Search results for: optimization for learning and data analysis

46542 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 593
46541 Optimization of Black-Litterman Model for Portfolio Assets Allocation

Authors: A. Hidalgo, A. Desportes, E. Bonin, A. Kadaoui, T. Bouaricha

Abstract:

Present paper is concerned with portfolio management with Black-Litterman (B-L) model. Considered stocks are exclusively limited to large companies stocks on US market. Results obtained by application of the model are presented. From analysis of collected Dow Jones stock data, remarkable explicit analytical expression of optimal B-L parameter τ, which scales dispersion of normal distribution of assets mean return, is proposed in terms of standard deviation of covariance matrix. Implementation has been developed in Matlab environment to split optimization in Markovitz sense from specific elements related to B-L representation.

Keywords: Black-Litterman, Markowitz, market data, portfolio manager opinion

Procedia PDF Downloads 260
46540 Investigating Teachers’ Perceptions about the Use of Technology in Second Language Learning at Universities in Pakistan

Authors: Nadir Ali Mugheri

Abstract:

This study has explored the perceptions of English language teachers (ELT) regarding use of technology in learning English as a second language (L2) at Universities in Pakistan. In this regard, 200 ELT teachers from 80 leading universities were selected through a judgmental sampling method. Results established that most of the teachers supported integration and incorporation of technology in the language classroom so as to teach L2 in an effective and efficient way. This study unearthed that the teachers termed the use of technology in learning English as a second language (ESL) as a positive step towards enhancing the learning capabilities and improving the personal traits of the students or learners. Findings suggest that the integration of technology in the language learning makes the learners within the classroom active and enthusiastic, and the teachers need to be equipped with the latest knowledge of mobile assisted language learning (MALL) and computer assisted language learning (CALL) so that they may ensure use of this innovative technology in their teaching practices. Results also indicated that the technology has proved itself a stimulus for improving language in the ELT milieu. The use of technology helps teachers develop themselves professionally. This study discovered that there are many determinants that make teaching and learning within the classroom efficacious, while the use of technology is one of them. Data was collected through qualitative design in order to get a complete depiction. Semi-structured interviews were conducted and analyzed through thematic analysis.

Keywords: english language teaching, computer assisted language learning, use of technology, thematic analysis

Procedia PDF Downloads 69
46539 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy

Authors: Varsha Singh, Kishan Fuse

Abstract:

This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.

Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization

Procedia PDF Downloads 307
46538 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 261
46537 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic

Authors: PB Venkataraman

Abstract:

Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.

Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement

Procedia PDF Downloads 201
46536 Enhancing Teachers’ Professional Development Programmes by the Implementation of Flipped Learning Instruction: A Qualitative Study

Authors: Badriah Algarni

Abstract:

The pedagogy of ‘flipped learning’ is a form of blended instruction which is gaining widespread attention throughout the world. However, there is a lack of research concerning teachers’ professional development (TPD) in teachers who use flipping. The aim of this study was, therefore, to identify teachers’ perspectives on their experience of flipped PD. The study used a qualitative approach. Purposive sampling recruited nineteen teachers who participated in semi-structured, in-depth interviews. Thematic analysis was used to analyse the interview data. Overall, the teachers reported feeling more confident in their knowledge and skills after participating in flipped TPD. The analysis of the interview data revealed five overarching themes:1) increased engagement with the content; 2) better use of resources; 3) a social, collaborative environment; 4) exchange of practices and experiences; and 5) valuable online activities. These findings can encourage educators, policymakers, and trainers to consider flipped TPD as a form of PD to promote the building of teachers’ knowledge and stimulate reflective practices to improve teaching and learning practices.

Keywords: engagement, flipped learning, teachers’ professional development, collaboration

Procedia PDF Downloads 96
46535 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation

Authors: Elaheh Vaezpour

Abstract:

Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.

Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption

Procedia PDF Downloads 334
46534 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 148
46533 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 65
46532 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
46531 An Investigation on Engineering Students’ Perceptions Towards E-learning in the UK

Authors: Vida Razzaghifard

Abstract:

E-learning, also known as online learning, has indicated an increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in UK. For the purpose of the present study, 145 second year Engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions on e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions towards e-learning.

Keywords: E-learning, higher, education, engineering education, online learning

Procedia PDF Downloads 95
46530 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method

Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko

Abstract:

The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.

Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion

Procedia PDF Downloads 290
46529 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 123
46528 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem

Authors: Dávid Csercsik, Péter Kádár

Abstract:

In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.

Keywords: optimization, MATLAB, quadratic programming, economic dispatch

Procedia PDF Downloads 549
46527 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
46526 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
46525 Predictive Maintenance of Electrical Induction Motors Using Machine Learning

Authors: Muhammad Bilal, Adil Ahmed

Abstract:

This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.

Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures

Procedia PDF Downloads 117
46524 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study

Authors: Hamidoddin Yousife

Abstract:

Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.

Keywords: drlling, cost, optimization, parameters

Procedia PDF Downloads 168
46523 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem

Authors: Takahiro Hino, Michiharu Maeda

Abstract:

Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.

Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem

Procedia PDF Downloads 552
46522 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 451
46521 Skills Development: The Active Learning Model of a French Computer Science Institute

Authors: N. Paparisteidi, D. Rodamitou

Abstract:

This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.

Keywords: active learning, blended learning, higher education, skills development

Procedia PDF Downloads 104
46520 Lifelong Learning and Digital Literacies in Language Learning

Authors: Selma Karabinar

Abstract:

Lifelong learning can be described as a system where learning takes place for a person over the course of a lifespan and comprises formal, non-formal and informal learning to achieve the maximum possible improvement in personal, social, and vocational life. 21st century is marked with the digital technologies and people need to learn and adapt to new literacies as part of their lifelong learning. Our current knowledge gap brings to mind several questions: Do people with digital mindsets have different assumptions about affordances of digital technologies? How do digital mindsets lead language learners use digital technologies within and beyond classrooms? Does digital literacies have different significance for the learners? The presentation is based on a study attempted to answer these questions and show the relationship between lifelong learning and digital literacies. The study was conducted with learners of English language at a state university in Istanbul. The quantitative data in terms of participants' lifelong learning perception was collected through a lifelong learning scale from 150 students. Then 5 students with high and 5 with low lifelong learning perception were interviewed. They were questioned about their personal sense of agency in lifelong learning and how they use digital technologies in their language learning. Therefore, the qualitative data was analyzed in terms of their knowledge about digital literacies and actual use of it in their personal and educational life. The results of the study suggest why teaching new literacies are important for lifelong learning and also suggests implications for language teachers' education and language pedagogy.

Keywords: digital mindsets, language learning, lifelong learning, new literacies

Procedia PDF Downloads 381
46519 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments

Authors: Felix Böck

Abstract:

Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.

Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization

Procedia PDF Downloads 16
46518 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 265
46517 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 361
46516 Students’ Perception of Their M-Learning Readiness

Authors: Sulaiman Almutairy, Trevor Davies, Yota Dimitriadi

Abstract:

This paper presents study investigating how to understand better the psychological readiness for mobile learning (m-learning) among Saudi students, while also evaluating m-learning in Saudi Arabia-a topic that has not yet received adequate attention from researchers. Data was acquired through a questionnaire administered to 131 Saudi students at UK universities, in July 2013. The study confirmed that students are confident using mobile devices in their daily lives and that they would welcome more opportunities for mobile learning. The findings indicated that Saudi higher education students are highly familiar with, and are psychologically ready for, m-learning.

Keywords: m-learning, mobile technologies, psychological readiness, higher education

Procedia PDF Downloads 520
46515 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 129
46514 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning

Procedia PDF Downloads 95
46513 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 167