Search results for: multiple levels of intelligence
12706 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO
Procedia PDF Downloads 25912705 The Transformation of the Workplace through Robotics, Artificial Intelligence, and Automation
Authors: Javed Mohammed
Abstract:
Robotics is the fastest growing industry in the world, poised to become the largest in the next decade. The use of robots requires design, application and implementation of the appropriate safety controls in order to avoid creating hazards to production personnel, programmers, maintenance specialists and systems engineers. The increasing use of artificial intelligence (AI) and related technologies in the workplace are dramatically changing the employment landscape. The impact of robotics technology on workplace policy is dramatic and complex. The robotics revolution calls for a comprehensive approach to job training, and retraining, to mitigate worker displacement and enable workers to benefit from the new jobs that the technology will generate. It calls for a thoughtful, forward-thinking approach by lawmakers, regulators and employers to prepare for the oncoming transformation of the workplace and workforce.Keywords: design, artificial intelligence, programmers, system engineers, robotics, transformation
Procedia PDF Downloads 47312704 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things
Authors: Wei Hu, Wenguang Chen, Chong Dong
Abstract:
In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management
Procedia PDF Downloads 12512703 The Term of Intellectual Property and Artificial Intelligence
Authors: Yusuf Turan
Abstract:
Definition of Intellectual Property Rights according to the World Intellectual Property Organization: " Intellectual property (IP) refers to creations of the mind, such as inventions; literary and artistic works; designs; and symbols, names and images used in commerce." It states as follows. There are 2 important points in the definition; we can say that it is the result of intellectual activities that occur by one or more than one PERSON and as INNOVATION. When the history and development of the relevant definitions are briefly examined, it is realized that these two points have remained constant and Intellectual Property law and rights have been shaped around these two points. With the expansion of the scope of the term Intellectual Property as a result of the development of technology, especially in the field of artificial intelligence, questions such as "Can "Artificial Intelligence" be an inventor?" need to be resolved within the expanding scope. In the past years, it was ruled that the artificial intelligence named DABUS seen in the USA did not meet the definition of "individual" and therefore would be an inventor/inventor. With the developing technology, it is obvious that we will encounter such situations much more frequently in the field of intellectual property. While expanding the scope, we should definitely determine the boundaries of how we should decide who performs the mental activity or creativity that we call indispensable on the inventor/inventor according to these problems. As a result of all these problems and innovative situations, it is clearly realized that not only Intellectual Property Law and Rights but also their definitions need to be updated and improved. Ignoring the situations that are outside the scope of the current Intellectual Property Term is not enough to solve the problem and brings uncertainty. The fact that laws and definitions that have been operating on the same theories for years exclude today's innovative technologies from the scope contradicts intellectual property, which is expressed as a new and innovative field. Today, as a result of the innovative creation of poetry, painting, animation, music and even theater works with artificial intelligence, it must be recognized that the definition of Intellectual Property must be revised.Keywords: artificial intelligence, innovation, the term of intellectual property, right
Procedia PDF Downloads 7212702 The Effectiveness of Teaching Emotional Intelligence on Reducing Marital Conflicts and Marital Adjustment in Married Students of Tehran University
Authors: Elham Jafari
Abstract:
The aim of this study was to evaluate the effectiveness of emotional intelligence training on reducing marital conflict and marital adjustment in married students of the University of Tehran. This research is an applied type in terms of purpose and a semi-experimental design of pre-test-post-test type with the control group and with follow-up test in terms of the data collection method. The statistical population of the present study consisted of all married students of the University of Tehran. In this study, 30 married students of the University of Tehran were selected by convenience sampling method as a sample that 15 people in the experimental group and 15 people in the control group were randomly selected. The method of data collection in this research was field and library. The data collection tool in the field section was two questionnaires of marital conflict and marital adjustment. To analyze the collected data, first at the descriptive level, using statistical indicators, the demographic characteristics of the sample were described by SPSS software. In inferential statistics, the statistical method used was the test of analysis of covariance. The results showed that the effect of the independent variable of emotional intelligence on the reduction of marital conflicts is statistically significant. And it can be inferred that emotional intelligence training has reduced the marital conflicts of married students of the University of Tehran in the experimental group compared to the control group. Also, the effect of the independent variable of emotional intelligence on marital adjustment was statistically significant. It can be inferred that emotional intelligence training has adjusted the marital adjustment of married students of the University of Tehran in the experimental group compared to the control group.Keywords: emotional intelligence, marital conflicts, marital compatibility, married students
Procedia PDF Downloads 25212701 Meeting the Challanges of Regulating Artificial Intelligence
Authors: Abdulrahman S. Shryan Aldossary
Abstract:
Globally, artificial intelligence (AI) is already performing legitimate tasks on behalf of humans. In Saudi Arabia, large-scale national projects, primarily based on AI technologies and receiving billions of dollars of funding, are projected for completion by 2030. However, the legal aspect of these projects is seriously vulnerable, given AI’s unprecedented ability to self-learn and act independently. This paper, therefore, identifies the critical legal aspects of AI that authorities and policymakers should be aware of, specifically whether AI can possess identity and be liable for the risk of public harm. The article begins by identifying the problematic characteristics of AI and what should be considered by legal experts when dealing with it. Also discussed are the possible competent institutions that could regulate AI in Saudi Arabia. Finally, a procedural proposal is presented for controlling AI, focused on Saudi Arabia but potentially of interest to other jurisdictions facing similar concerns about AI safety.Keywords: regulation, artificial intelligence, tech law, automated systems
Procedia PDF Downloads 17612700 Strengthening Urban Governance and Planning Practices for Urban Sustainability Transformations in Cambodia
Authors: Fiona Lord
Abstract:
This paper presents research on strengthening urban governance and planning practices for sustainable and regenerative city transformations looking at urban governance in Cambodia as a case study. Transformations to urban sustainability and regeneration require systemic and long-term transformation processes, across multiple levels of society and inclusive of multiple urban actors. This paper presents the emerging findings of a qualitative case study comparing the urban governance and planning practices in two of Cambodia's secondary cities - Battambang and Sihanoukville. The lessons learned have broader implications for how governance and planning can be strengthened to initiate and sustain urban sustainability transformations in other developing country cities of Cambodia and the Southeast Asia region.Keywords: Cambodia, planning practices, urban governance, urban sustainability transformations
Procedia PDF Downloads 23312699 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 25512698 Teachers’ Personal and Professional Characteristics: How They Relate to Teacher-Student Relationships and Students’ Behavior
Authors: Maria Poulou
Abstract:
The study investigated how teachers’ self-rated Emotional Intelligence (EI), competence in implementing Social and Emotional Learning (SEL) skills and teaching efficacy relate to teacher-student relationships and students’ emotional and behavioral difficulties. Participants were 98 elementary teachers from public schools in central Greece. They completed the Self-Rated Emotional Intelligence Scale (SREIS), the Teacher SEL Beliefs Scale, the Teachers’ Sense of Efficacy Scale (TSES), the Student-Teacher Relationships Scale-Short Form (STRS-SF) and the Strengths and Difficulties Questionnaire (SDQ) for 617 of their students, aged 6-11 years old. Structural equation modeling was used to examine an exploratory model of the variables. It was demonstrated that teachers’ emotional intelligence, SEL beliefs and teaching efficacy were significantly related to teacher-student relationships, but they were not related to students’ emotional and behavioral difficulties. Rather, teachers’ perceptions of teacher-students relationships were significantly related to these difficulties. These findings and their implications for research and practice are discussed.Keywords: emotional intelligence, social and emotional learning, teacher-student relationships, teaching efficacy
Procedia PDF Downloads 44112697 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 4912696 Factors Affecting the Adoption of Cloud Business Intelligence among Healthcare Sector: A Case Study of Saudi Arabia
Authors: Raed Alsufyani, Hissam Tawfik, Victor Chang, Muthu Ramachandran
Abstract:
This study investigates the factors that influence the decision by players in the healthcare sector to embrace Cloud Business Intelligence Technology with a focus on healthcare organizations in Saudi Arabia. To bring this matter into perspective, this study primarily considers the Technology-Organization-Environment (TOE) framework and the Human Organization-Technology (HOT) fit model. A survey was hypothetically designed based on literature review and was carried out online. Quantitative data obtained was processed from descriptive and one-way frequency statistics to inferential and regression analysis. Data were analysed to establish factors that influence the decision to adopt Cloud Business intelligence technology in the healthcare sector. The implication of the identified factors was measured, and all assumptions were tested. 66.70% of participants in healthcare organization backed the intention to adopt cloud business intelligence system. 99.4% of these participants considered security concerns and privacy risk have been the most significant factors in the adoption of cloud Business Intelligence (CBI) system. Through regression analysis hypothesis testing point that usefulness, service quality, relative advantage, IT infrastructure preparedness, organization structure; vendor support, perceived technical competence, government support, and top management support positively and significantly influence the adoption of (CBI) system. The paper presents quantitative phase that is a part of an on-going project. The project will be based on the consequences learned from this study.Keywords: cloud computing, business intelligence, HOT-fit model, TOE, healthcare and innovation adoption
Procedia PDF Downloads 17112695 Investigating Online Literacy among Undergraduates in Malaysia
Authors: Vivien Chee Pei Wei
Abstract:
Today we live in a scenario in which letters share space with images on screens that vary in size, shape, and style. The popularization of television, then the computer and now the e-readers, tablets, and smartphones made the electronic assume the role that previously was restricted to printed materials. Since the extensive use of new technologies to produce, disseminate, collect and access electronic publications began, the changes to reading has been intensified. To be able to read online, it involves more than just utilizing specific skills, strategies, and practices, but also in negotiating multiple information sources. In this study, different perspectives of digital reading are being explored in order to define the key aspects of the term. The focus is to explore how new technologies affect how undergraduates’ reading behavior, which in turn, gives readers different reading levels and engagement with the text and other support materials in the same media. There is also the importance of the relationship between reading platforms, reading levels and formats of electronic publications. The study looks at the online reading practices of about 100 undergraduates from a local university. The data collected using the survey and interviews with the respondents are analyzed thematically. Findings from this study found that both digital and traditional reading are interrelated, and should not be viewed as separate, but complementary to each other. However, reading online complicates some of the skills required by traditional reading. Consequently, in order to successfully read and comprehend multiple sources of information online, undergraduates need regular opportunities to practice and develop their skills as part of their natural reading practices.Keywords: concepts, digital reading, literacy, traditional reading
Procedia PDF Downloads 31112694 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 17112693 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 1612692 Interactive Multiple Functions User Interface
Authors: Manjit Singh Sidhu, Waleed Maqableh, Jee Geak Ying
Abstract:
Tangible user interfaces (TUI) that employ markers in the augmented reality (AR) environment has hampered the interactivity between the user and the software application. This is because the user lacks focus on visualizing the contents due to the interaction mechanisms whereby multiple markers may need to be used to perform a particular function. In this research, we have designed a novel TUI user interface where multiple functions could be triggered similar to a natural keyboard thus allowing user to focus more on its digital contents such as 2D/3D, text input, animation and sound. Test results of the user interface with potential users and HCI experts revealed that the multiple functions user interface was new, preferred and appreciated more as opposed to marker based user interface.Keywords: multimedia, augmented reality, engineering, user interface, visualization
Procedia PDF Downloads 45012691 Hyper-Immunoglobulin E (Hyper-Ige) Syndrome In Skin Of Color: A Retrospective Single-Centre Observational Study
Authors: Rohit Kothari, Muneer Mohamed, Vivekanandh K., Sunmeet Sandhu, Preema Sinha, Anuj Bhatnagar
Abstract:
Introduction: Hyper-IgE syndrome is a rare primary immunodeficiency syndrome characterised by triad of severe atopic dermatitis, recurrent pulmonary infections, and recurrent staphylococcal skin infections. The diagnosis requires a high degree of suspicion, typical clinical features, and not mere rise in serum-IgE levels, which may be seen in multiple conditions. Genetic studies are not always possible in a resource poor setting. This study highlights various presentations of Hyper-IgE syndrome in skin of color children. Case-series: Our study had six children of Hyper-IgE syndrome aged twomonths to tenyears. All had onset in first ten months of life except one with a late-onset at two years. All had recurrent eczematoid rash, which responded poorly to conventional treatment, secondary infection, multiple episodes of hospitalisation for pulmonary infection, and raised serum IgE levels. One case had occasional vesicles, bullae, and crusted plaques over both the extremities. Genetic study was possible in only one of them who was found to have pathogenic homozygous deletions of exon-15 to 18 in DOCK8 gene following which he underwent bone marrow transplant (BMT), however, succumbed to lower respiratory tract infection two months after BMT and rest of them received multiple courses of antibiotics, oral/ topical steroids, and cyclosporine intermittently with variable response. Discussion: Our study highlights various characteristics, presentation, and management of this rare syndrome in children. Knowledge of these manifestations in skin of color will facilitate early identification and contribute to optimal care of the patients as representative data on the same is limited in literature.Keywords: absolute eosinophil count, atopic dermatitis, eczematous rash, hyper-immunoglobulin E syndrome, pulmonary infection, serum IgE, skin of color
Procedia PDF Downloads 13912690 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)
Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair
Abstract:
This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity
Procedia PDF Downloads 1712689 The Impact of Teacher's Emotional Intelligence on Students' Motivation to Learn
Authors: Marla Wendy Spergel
Abstract:
The purpose of this qualitative study is to showcase graduated high school students’ to voice on the impact past teachers had on their motivation to learn, and if this impact has affected their post-high-school lives. Through a focus group strategy, 21 graduated high school alumni participated in three separate focus groups. Participants discussed their former teacher’s emotional intelligence skills, which influenced their motivation to learn or not. A focused review of the literature revealed that teachers are a major factor in a student’s motivation to learn. This research was guided by Bandura’s Social Cognitive Theory of Motivation and constructs related to learning and motivation from Carl Rogers’ Humanistic Views of Personality, and from Brain-Based Learning perspectives with a major focus on the area of Emotional Intelligence. Findings revealed that the majority of participants identified teachers who most motivated them to learn and demonstrated skills associated with emotional intelligence. An important and disturbing finding relates to the saliency of negative experiences. Further work is recommended to expand this line of study in Higher Education, perform a long-term study to better gain insight into long-term benefits attributable to experiencing positive teachers, study the negative impact teachers have on students’ motivation to learn, specifically focusing on student anxiety and acquired helplessness.Keywords: emotional intelligence, learning, motivation, pedagogy
Procedia PDF Downloads 15812688 Capacitated Multiple Allocation P-Hub Median Problem on a Cluster Based Network under Congestion
Authors: Çağrı Özgün Kibiroğlu, Zeynep Turgut
Abstract:
This paper considers a hub location problem where the network service area partitioned into predetermined zones (represented by node clusters is given) and potential hub nodes capacity levels are determined a priori as a selection criteria of hub to investigate congestion effect on network. The objective is to design hub network by determining all required hub locations in the node clusters and also allocate non-hub nodes to hubs such that the total cost including transportation cost, opening cost of hubs and penalty cost for exceed of capacity level at hubs is minimized. A mixed integer linear programming model is developed introducing additional constraints to the traditional model of capacitated multiple allocation hub location problem and empirically tested.Keywords: hub location problem, p-hub median problem, clustering, congestion
Procedia PDF Downloads 49212687 An Investigation the Effectiveness of Emotion Regulation Training on the Reduction of Cognitive-Emotion Regulation Problem in Patients with Multiple Sclerosis
Authors: Mahboobeh Sadeghi, Zahra Izadi Khah, Mansour Hakim Javadi, Masoud Gholamali Lavasani
Abstract:
Background: Since there is a relation between psychological and physiological factors, the aim of this study was to examine the effect of Emotion Regulation training on cognitive emotion regulation problem in patients with Multiple Sclerosis(MS) Method: In a randomized clinical trial thirty patients diagnosed with Multiple Sclerosis referred to state welfare organization were selected. The sample group was randomized into either an experimental group or a nonintervention control group. The subjects participated in 75-minute treatment sessions held three times a week for 4weeks (12 sessions). All 30 individuals were administered with Cognitive Emotion Regulation questionnaire (CERQ). Participants completed the questionnaire in pretest and post-test. Data obtained from the questionnaire was analyzed using Mancova. Results: Emotion Regulation significantly decreased the Cognitive Emotion Regulation problems patients with Multiple sclerosis (p < 0.001). Conclusions: Emotion Regulation can be used for the treatment of cognitive-emotion regulation problem in Multiple sclerosis.Keywords: Multiple Sclerosis, cognitive-emotion regulation, emotion regulation, MS
Procedia PDF Downloads 45912686 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 14412685 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 20612684 Performance Analysis of M-Ary Pulse Position Modulation in Multihop Multiple Input Multiple Output-Free Space Optical System over Uncorrelated Gamma-Gamma Atmospheric Turbulence Channels
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of Decode and Forward (DF) multihop Free Space Optical ( FSO) scheme deploying Multiple Input Multiple Output (MIMO) configuration under Gamma-Gamma (GG) statistical distribution, that adopts M-ary Pulse Position Modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of Symbol-Error Rates (SERs) respectively. A closed form formula related to the Probability Density Function (PDF) is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.Keywords: free space optical, multiple input multiple output, M-ary pulse position modulation, multihop, decode and forward, symbol error rate, gamma-gamma channel
Procedia PDF Downloads 19912683 Nurturing of Children with Results from Their Nature (DNA) Using DNA-MILE
Authors: Tan Lay Cheng (Cheryl), Low Huiqi
Abstract:
Background: All children learn at different pace. Individualized learning is an approach that tailors to the individual learning needs of each child. When implementing this approach, educators have to base their lessons on the understanding that all students learn differently and that what works for one student may not work for another. In the current early childhood environment, individualized learning is for children with diverse needs. However, a typical developing child is also able to benefit from individualized learning. This research abstract explores the concept of utilizing DNA-MILE, a patented (in Singapore) DNA-based assessment tool that can be used to measure a variety of factors that can impact learning. The assessment report includes the dominant intelligence of the user or, in this case, the child. From the result, a personalized learning plan that is tailored to each individual student's needs. Methods: A study will be conducted to investigate the effectiveness of DNA-MILE in supporting individualized learning. The study will involve a group of 20 preschoolers who were randomly assigned to either a DNA-MILE-assessed group (experimental group) or a control group. 10 children in each group. The experimental group will receive DNA Mile assessments and personalized learning plans, while the control group will not. The children in the experimental group will be taught using the dominant intelligence (as shown in the DNA-MILE report) to enhance their learning in other domains. The children in the control group will be taught using the curriculum and lesson plan set by their teacher for the whole class. Parents’ and teachers’ interviews will be conducted to provide information about the children before the study and after the study. Results: The results of the study will show the difference in the outcome of the learning, which received DNA Mile assessments and personalized learning plans, significantly outperformed the control group on a variety of measures, including standardized tests, grades, and motivation. Conclusion: The results of this study suggest that DNA Mile can be an effective tool for supporting individualized learning. By providing personalized learning plans, DNA Mile can help to improve learning outcomes for all students.Keywords: individualized, DNA-MILE, learning, preschool, DNA, multiple intelligence
Procedia PDF Downloads 11912682 Clinical Experience and Perception of Risk affect the Acceptance and Trust of using AI in Medicine
Authors: Schulz Peter, Kee Kalya, Lwin May, Goh Wilson, Chia Kendrikck, Chueng Max, Lam Thomas, Sung Joseph
Abstract:
As Artificial Intelligence (AI) is progressively making inroads into clinical practice, questions have arisen as to whether acceptance of AI is skewed toward certain medical practitioner segments, even within particular specializations. This study examines distinct AI acceptance among gastroenterologists with contrasting levels of seniority/experience when interacting with AI typologies. Data from 319 gastroenterologists show the presence of four distinct clusters of clinicians based on experience levels and perceived risk typologies. Analysis of cluster-based responses further revealed that acceptance of AI was not uniform. Our findings showed that clinician experience and risk perspective have an interactive role in influencing AI acceptance. Senior clinicians with low-risk perceptions were highly accepting of AI, but those with high-risk perceptions of AI were substantially less accepting. In contrast, junior clinicians were more inclined to embrace AI when they perceived high risk, yet they hesitated to adopt AI when the perceived risk was minimal.Keywords: risk perception, acceptance, trust, medicine
Procedia PDF Downloads 2112681 Measuring the Effect of Continuous Performance Test-3 Administration on Regional Cerebral Blood Flow with Single-Photon Emission Computed Tomography in Adult ADHD
Authors: Claire Stafford, Charles Golden, Daniel Amen, Kristen Willeumier
Abstract:
The aim of this study is to investigate the effect of the administration of the Conners Continuous Performance Test (CPT-3) on cerebral blood flow (CBF) in adults with ADHD. The data for this study was derived from a large SPECT database. Participants in the ADHD group (n=81, Mage=37.97) were similar to those in the healthy control group (n=8503, Mage=41.86). All participants were assessed for cerebral blood flow levels before and after CPT-3 administration. Both age and gender were considered covariates. Multiple 2-by-2 ANCOVAs with repeated measures were conducted with sphericity assumed. The main effects of CPT-3 administration on CBF levels were significant in the left and right side of the frontal and occipital, and right temporal lobe. The main effects of ADHD diagnosis were significant in all brain areas assessed. The interaction between CPT-3 administration and ADHD diagnosis was significant in the left and right side of the limbic system, basal ganglia, the frontal lobe, and occipital lobe. Post hoc tests with a Bonferroni adjustment revealed that CBF levels increased following CPT-3 administration but less so in the ADHD group. Individuals had higher levels of CBF following the administration of CPT-3. Due to a significant interaction, we can infer that ADHD diagnosis changes the effect of CPT-3 administration on CBF levels. This is consistent with our hypothesis considering that CPT-3 is a test of sustained attention, a common challenge for children with ADHD. The aforementioned interaction was not found to be significant in the parietal lobe. This may be due to the nature of CPT- 3 which does not require an integration of sensory information.Keywords: SPECT, ADHD, conners continuous performance test, cerebral blood flow
Procedia PDF Downloads 10212680 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 15012679 Correlation of Depression and Anxiety with Glycemic Control in Children with Type I Diabetes Mellitus
Authors: Sujata Sethi, Pawan Kumar, Sameer Aggarwal
Abstract:
Depression and anxiety are of significant concern in youth with type 1 diabetes mellitus (T1DM) and these are correlated with glycemic control in multiple ways. The extent of depression and anxiety in children with T1DM remains poorly studied in India. The index study aimed to find the prevalence of depression and anxiety and their correlation with HbA1c (glycated hemoglobin) levels in children with T1DM. Material and methods: This study was a cross-sectional study carried out on a purposive sample of 45 children with T1DM. Depressive symptoms were assessed using Children’s Depression Rating Scale-Revised (CDRS-R) and anxiety symptoms were assessed using Spence Children’s Anxiety Scale (SCAS). Glycated hemoglobin (HbA1c) levels of all the participants were recorded. Results: 43 out of 45 children were analyzed as HbA1c status for two was not known. 48.8% were females. Mean age was 12.95+2.04. The average duration of diabetes was 3.63+1.82. Mean CDRS-R score was 41.6+12.25 and mean SCAS score was 33.07+12.29. Mean recording of HbA1c level was 7.90+1.51. 27 (62.8%) out of 43 participants had abnormal scores on CDRS-R and 24 (55.8%) out of 43 had abnormal scores on SCAS. The correlation coefficient between HbA1c levels and the CDRS-R score came out to be 0.57 and between HbA1c and SCAS, it was 0.53. Both correlations were significant with the p-value of < 0.02. Conclusion: Children with T1DM have high co-morbidity of depression and anxiety which is significantly correlated with the HbA1c levels. Thus, it becomes important to screen the patients for depression and anxiety for better outcomes.Keywords: anxiety, depression, HbA1c, T1DM
Procedia PDF Downloads 22812678 Applications of Multi-Path Futures Analyses for Homeland Security Assessments
Authors: John Hardy
Abstract:
A range of future-oriented intelligence techniques is commonly used by states to assess their national security and develop strategies to detect and manage threats, to develop and sustain capabilities, and to recover from attacks and disasters. Although homeland security organizations use future's intelligence tools to generate scenarios and simulations which inform their planning, there have been relatively few studies of the methods available or their applications for homeland security purposes. This study presents an assessment of one category of strategic intelligence techniques, termed Multi-Path Futures Analyses (MPFA), and how it can be applied to three distinct tasks for the purpose of analyzing homeland security issues. Within this study, MPFA are categorized as a suite of analytic techniques which can include effects-based operations principles, general morphological analysis, multi-path mapping, and multi-criteria decision analysis techniques. These techniques generate multiple pathways to potential futures and thereby generate insight into the relative influence of individual drivers of change, the desirability of particular combinations of pathways, and the kinds of capabilities which may be required to influence or mitigate certain outcomes. The study assessed eighteen uses of MPFA for homeland security purposes and found that there are five key applications of MPFA which add significant value to analysis. The first application is generating measures of success and associated progress indicators for strategic planning. The second application is identifying homeland security vulnerabilities and relationships between individual drivers of vulnerability which may amplify or dampen their effects. The third application is selecting appropriate resources and methods of action to influence individual drivers. The fourth application is prioritizing and optimizing path selection preferences and decisions. The fifth application is informing capability development and procurement decisions to build and sustain homeland security organizations. Each of these applications provides a unique perspective of a homeland security issue by comparing a range of potential future outcomes at a set number of intervals and by contrasting the relative resource requirements, opportunity costs, and effectiveness measures of alternative courses of action. These findings indicate that MPFA enhances analysts’ ability to generate tangible measures of success, identify vulnerabilities, select effective courses of action, prioritize future pathway preferences, and contribute to ongoing capability development in homeland security assessments.Keywords: homeland security, intelligence, national security, operational design, strategic intelligence, strategic planning
Procedia PDF Downloads 13912677 Overcoming Open Innovation Challenges with Technology Intelligence: Case of Medium-Sized Enterprises
Authors: Akhatjon Nasullaev, Raffaella Manzini, Vincent Frigant
Abstract:
The prior research largely discussed open innovation practices both in large and small and medium-sized enterprises (SMEs). Open Innovation compels firms to observe and analyze the external environment in order to tap new opportunities for inbound and/or outbound flows of knowledge, ideas, work in progress innovations. As SMEs are different from their larger counterparts, they face several limitations in utilizing open innovation activities, such as resource scarcity, unstructured innovation processes and underdeveloped innovation capabilities. Technology intelligence – the process of systematic acquisition, assessment and communication of information about technological trends, opportunities and threats can mitigate this limitation by enabling SMEs to identify technological and market opportunities in timely manner and undertake sound decisions, as well as to realize a ‘first mover advantage’. Several studies highlighted firm-level barriers to successful implementation of open innovation practices in SMEs, namely challenges in partner selection, intellectual property rights and trust, absorptive capacity. This paper aims to investigate the question how technology intelligence can be useful for SMEs to overcome the barriers to effective open innovation. For this, we conduct a case study in four Estonian life-sciences SMEs. Our findings revealed that technology intelligence can support SMEs not only in inbound open innovation (taking into account inclination of most firms toward technology exploration aspects of open innovation) but also outbound open innovation. Furthermore, the results of this study state that, although SMEs conduct technology intelligence in unsystematic and uncoordinated manner, it helped them to increase their innovative performance.Keywords: technology intelligence, open innovation, SMEs, life sciences
Procedia PDF Downloads 167