Search results for: inverse filtering on graphs
923 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.Keywords: genetic algorithm, kinematic hardening, material model, objective function
Procedia PDF Downloads 334922 Random Matrix Theory Analysis of Cross-Correlation in the Nigerian Stock Exchange
Authors: Chimezie P. Nnanwa, Thomas C. Urama, Patrick O. Ezepue
Abstract:
In this paper we use Random Matrix Theory to analyze the eigen-structure of the empirical correlations of 82 stocks which are consistently traded in the Nigerian Stock Exchange (NSE) over a 4-year study period 3 August 2009 to 26 August 2013. We apply the Marchenko-Pastur distribution of eigenvalues of a purely random matrix to investigate the presence of investment-pertinent information contained in the empirical correlation matrix of the selected stocks. We use hypothesised standard normal distribution of eigenvector components from RMT to assess deviations of the empirical eigenvectors to this distribution for different eigenvalues. We also use the Inverse Participation Ratio to measure the deviation of eigenvectors of the empirical correlation matrix from RMT results. These preliminary results on the dynamics of asset price correlations in the NSE are important for improving risk-return trade-offs associated with Markowitz’s portfolio optimization in the stock exchange, which is pursued in future work.Keywords: correlation matrix, eigenvalue and eigenvector, inverse participation ratio, portfolio optimization, random matrix theory
Procedia PDF Downloads 344921 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber
Authors: Stanislav Perepechko
Abstract:
Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.Keywords: waste-free air filtration, concrete, basalt fiber, building automation
Procedia PDF Downloads 428920 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 228919 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge
Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert
Abstract:
The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis
Procedia PDF Downloads 108918 A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator
Authors: Abolfazl Zaraki, Yoshikatsu Hayashi, Harry Thorpe, Vincent Strong, Gisle-Andre Larsen, William Holderbaum
Abstract:
Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application.Keywords: hyper-redundant robots, kinematic analysis, semi-autonomous control, serial manipulators
Procedia PDF Downloads 157917 Analysis of Spamming Threats and Some Possible Solutions for Online Social Networking Sites (OSNS)
Authors: Dilip Singh Sisodia, Shrish Verma
Abstract:
Spamming is the most common issue seen nowadays in the Internet especially in Online Social Networking Sites (like Facebook, Twitter, and Google+ etc.). Spam messages keep wasting Internet bandwidth and the storage space of servers. On social network sites; spammers often disguise themselves by creating fake accounts and hijacking user’s accounts for personal gains. They behave like normal user and they continue to change their spamming strategy. To prevent this, most modern spam-filtering solutions are deployed on the receiver side; they are good at filtering spam for end users. In this paper we are presenting some spamming techniques their behaviour and possible solutions. We have analyzed how Spammers enters into online social networking sites (OSNSs) and how they target it and the techniques they use for it. The five discussed techniques of spamming techniques which are clickjacking, social engineered attacks, cross site scripting, URL shortening, and drive by download. We have used elgg framework for demonstration of some of spamming threats and respective implementation of solutions.Keywords: online social networking sites, spam, attacks, internet, clickjacking / likejacking, drive-by-download, URL shortening, networking, socially engineered attacks, elgg framework
Procedia PDF Downloads 348916 Countercyclical Capital Buffer in the Polish Banking System
Authors: Mateusz Mokrogulski, Piotr Śliwka
Abstract:
The aim of this paper is the identification of periods of excessive credit growth in the Polish banking sector in years 2007-2014 using different methodologies. Due to the lack of precise guidance in CRD IV regarding methods of calculating the credit gap and related deviations from the long-term trends, a few filtering methods are applied, e.g. Hodrick-Prescott and Baxter-King. The solutions based on the switching model are also proposed. The next step represent computations of both the credit gap, and the counter cyclical capital buffer (CCB) rates on a quarterly basis. The calculations are carried out for the entire banking sector in Poland, as well as for its components (commercial and co-operative banks), and different types of loans. The calculations show vividly that in the analysed period there were the times of excessive credit growth. However, the results are different for the above mentioned sub-sectors. Of paramount importance here are mortgage loans, where the outcomes are distorted by high exchange rate fluctuations. The research on the CCB is now going to gain popularity as the buffer will soon become one of the tools of the macro prudential policy under CRD IV. Although the presented method is focused on the Polish banking sector, it can also be applied to other member states. Especially to the Central and Eastern European countries, that are usually characterized by smaller banking sectors compared to EU-15.Keywords: countercyclical capital buffer, CRD IV, filtering methods, mortgage loans
Procedia PDF Downloads 322915 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 184914 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal
Authors: Jugal Bhandari, K. Hari Priya
Abstract:
The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language
Procedia PDF Downloads 367913 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate
Authors: Neetu Manocha
Abstract:
Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI
Procedia PDF Downloads 141912 A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors: Ayaz Ahmad
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.Keywords: drift term, finite time blow up, inverse problem, soliton solution
Procedia PDF Downloads 215911 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 425910 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar
Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation
Procedia PDF Downloads 242909 Ensemble Sampler For Infinite-Dimensional Inverse Problems
Authors: Jeremie Coullon, Robert J. Webber
Abstract:
We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction
Procedia PDF Downloads 154908 Stress Evaluation at Lower Extremity during Walking with Unstable Shoe
Authors: Sangbaek Park, Seungju Lee, Soo-Won Chae
Abstract:
Unstable shoes are known to strengthen lower extremity muscles and improve gait ability and to change the user’s gait pattern. The change in gait pattern affects human body enormously because the walking is repetitive and steady locomotion in daily life. It is possible to estimate the joint motion including joint moment, force and inertia effect using kinematic and kinetic analysis. However, the change of internal stress at the articular cartilage has not been possible to estimate. The purpose of this research is to evaluate the internal stress of human body during gait with unstable shoes. In this study, FE analysis was combined with motion capture experiment to obtain the boundary condition and loading condition during walking. Motion capture experiments were performed with a participant during walking with normal shoes and with unstable shoes. Inverse kinematics and inverse kinetic analysis was performed with OpenSim. The joint angle and muscle forces were estimated as results of inverse kinematics and kinetics analysis. A detailed finite element (FE) lower extremity model was constructed. The joint coordinate system was added to the FE model and the joint coordinate system was coincided with OpenSim model’s coordinate system. Finally, the joint angles at each phase of gait were used to transform the FE model’s posture according to actual posture from motion capture. The FE model was transformed into the postures of three major phases (1st peak of ground reaction force, mid stance and 2nd peak of ground reaction force). The direction and magnitude of muscle force were estimated by OpenSim and were applied to the FE model’s attachment point of each muscle. Then FE analysis was performed to compare the stress at knee cartilage during gait with normal shoes and unstable shoes.Keywords: finite element analysis, gait analysis, human model, motion capture
Procedia PDF Downloads 323907 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots
Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra
Abstract:
Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation
Procedia PDF Downloads 191906 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)
Procedia PDF Downloads 422905 Investigation of the Role of Friction in Reducing Pedestrian Injuries in Accidents at Intersections
Authors: Seyed Abbas Tabatabaei, Afshin Ghanbarzadeh, Mehdi Abidizadeh
Abstract:
Nowadays the subject of road traffic accidents and the high social and economic costs due to them is the most fundamental problem that experts and providers of transport and traffic brought to a challenge. One of the most effective measures is to enhance the skid resistance of road surface. This research aims to study the intersection of one case in Ahwaz and the effect of increasing the skid resistance in reducing pedestrian injuries in accidents at intersections. In this research the device was developed to measure the coefficient of friction and tried the rules and practices of it have a high similarity with the Locked Wheel Trailer. This device includes a steel frame, wheels, hydration systems, and force gauge. The output of the device is that the force gauge registers. By investigate this data and applying the relationships relative surface coefficient of friction is obtained. Friction coefficient data for the current state and the state of the new pavement are obtained and plotted on the graphs based on the graphs we can compare the two situations and speed at the moment of collision between the two modes are compared. The results show that increasing the coefficient of friction to what extent can be effective on the severity and number of accidents.Keywords: intersection, coefficient of friction, skid resistance, locked wheels, accident, pedestrian
Procedia PDF Downloads 328904 Kinetic Study of the Esterification of Unsaturated Fatty Acids from Salmon Oil (Salmosalar L.)
Authors: André Luis Lima de Oliveira, Vera Lúcia Viana do Nascimento, Victória Maura Silva Bermudez, Mauricio Nunes Kleinberg, João Carlos da Costa Assunção, José Osvaldo Beserra Carioca
Abstract:
The objective of this study was to synthesize a triglyceride with high content of unsaturated fatty acids from salmon oil (Salmo salar L.) by esterification with glycerol catalyzed dealuminized zeolite. A kinetic study was conducted to determine the reaction order and the activation energy. A statistical study was conducted to determine optimal reaction conditions. Initially, the crude oil was refined salmon physically and chemically. The crude oil was hydrolyzed and unsaturated free fatty acids were separated by urea complexation method. An experimental project to verify the parameters (temperature, glycerin and catalyst) with the greatest impact on the reaction was developed. In experiments aliquots were taken at predetermined times to measure the amount of free fatty acids. Pareto, surface, contour and hub graphs were used to determine the factors that maximized the reaction. According to the graphs the best reaction conditions were: temperature 80 ° C, the proportion glycerine/oil 5: 1 and 1% of catalyst. The kinetic data showed that the system was compatible with a second-order reaction. After analyzing the rate constant versus temperature charts a value of 85.31 kJ/mol was obtained for the reaction activation energy.Keywords: esterification, kinect, oil, salmon
Procedia PDF Downloads 521903 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence
Authors: Rajeev Kumar, Harishankar Kumar
Abstract:
Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence
Procedia PDF Downloads 9902 Methods for Restricting Unwanted Access on the Networks Using Firewall
Authors: Bhagwant Singh, Sikander Singh Cheema
Abstract:
This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques
Procedia PDF Downloads 102901 A Recommender System for Dynamic Selection of Undergraduates' Elective Courses
Authors: Adewale O. Ogunde, Emmanuel O. Ajibade
Abstract:
The task of selecting a few elective courses from a variety of available elective courses has been a difficult one for many students over the years. In many higher institutions, guidance and counselors or level advisers are usually employed to assist the students in picking the right choice of courses. In reality, these counselors and advisers are most times overloaded with too many students to attend to, and sometimes they do not have enough time for the students. Most times, the academic strength of the student based on past results are not considered in the new choice of electives. Recommender systems implement advanced data analysis techniques to help users find the items of their interest by producing a predicted likeliness score or a list of top recommended items for a given active user. Therefore, in this work, a collaborative filtering-based recommender system that will dynamically recommend elective courses to undergraduate students based on their past grades in related courses was developed. This approach employed the use of the k-nearest neighbor algorithm to discover hidden relationships between the related courses passed by students in the past and the currently available elective courses. Real students’ results dataset was used to build and test the recommendation model. The developed system will not only improve the academic performance of students, but it will also help reduce the workload on the level advisers and school counselors.Keywords: collaborative filtering, elective courses, k-nearest neighbor algorithm, recommender systems
Procedia PDF Downloads 166900 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 404899 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation
Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan
Abstract:
The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation
Procedia PDF Downloads 258898 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 309897 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method
Authors: Atilla Bayram
Abstract:
This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss
Procedia PDF Downloads 348896 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 174895 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 169894 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser
Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou
Abstract:
The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift
Procedia PDF Downloads 101