Search results for: frequency control
13990 Fuzzy-Sliding Controller Design for Induction Motor Control
Authors: M. Bouferhane, A. Boukhebza, L. Hatab
Abstract:
In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control
Procedia PDF Downloads 49013989 The Effect on Some Plant Traits of Cutting Frequency Applied in Species of Grass
Authors: Mehmet Ali Avcı, Medine Çopur Doğrusöz
Abstract:
This study has been carried out in the Selcuk University, Department of Fields Crops Research and Application Greenhouse. 4 different grass genotypes (1 Lolium perenne L., 1 Poa trivialis L., 1 Festuca ovina L., and 1 Festuca arundinacea Scheb.) have been used in the application. It has been done with four repetition according to design of random parcel test. The research have been started with the implementation of 3 clones to each pot of each kind on 07.12.2009. It has been processed normally. When the plants have filled % 80 of the pot and have grown to the height of 7-10 cm, 5 cm has cut. After the first cutting, there have been applied 4 cutting frequency within the periods of 5, 10, 15, 20 days. Number of tillers, the degree of filling the bottom, the height of plant, the length of leaf and the width of the leaf have been measured. This procedure have been repeated in once a-five-day-periods, once a-ten-day-periods, once a-fifteen-day-periods, once a-twenty-day-periods, the data have been taken, and it has completed in 60 days. All the plants in the pots have been reaped from the 5cm height on 16.08.2010. The first measures have been taken for each quality. It is aimed to set the effects of different cutting frequency on the some grass kinds’ some plant characteristics.Keywords: cutting frequency, Festuca, Lolium, Poa
Procedia PDF Downloads 33813988 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island
Authors: Dong Wook Lee, Seung Hyun Kim
Abstract:
Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.Keywords: attenuation index, basaltic ground, blast vibration constant, blast vibration equation, clinker layer
Procedia PDF Downloads 28013987 Stability of Power System with High Penetration of Wind Energy: A Comprehensive Review
Authors: Jignesh Patel, Satish K. Joshi
Abstract:
This paper presents the literature review on the works done so far in the area of stability of power system with high penetration of Wind Power with other conventional power sources. Out of many problems, the voltage and frequency stability is of prime concern as it is directly related with the stable operation of power system. In this paper, different aspects of stability of power system, particularly voltage and frequency, Optimization of FACTS-Energy Storage devices is discussed.Keywords: small singal stability, voltage stability, frequency stability, LVRT, wind power, FACTS
Procedia PDF Downloads 48713986 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 66913985 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.Keywords: control flow graph, graph reduction, software engineering, software applications
Procedia PDF Downloads 55213984 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model
Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar
Abstract:
In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake
Procedia PDF Downloads 53913983 The Correlation between of Medicine and Postural Orthostatic Tachycardia Syndrome (POTS)
Authors: Dian Ariyawati, Romi Sukoco, Sinung Agung Joko
Abstract:
Background: Postural Orthostatic Tachycardia Syndrome (POTS) is a form of orthostatic intolerance caused by autonomic dysfunction. POTS predominantly occurs in young women. Regular exercise has proven to improve the organ system functions, including autonomous systems. The aim of this research was to determine the correlation between exercise frequency and POTS in young women. Method: 510 young women (16-23 years of age) were screened. They were obtained by interview and physical examination. The diagnosis of POTS was performed with Active Stand Test (AST) and heart rate measurement using a pulsemeter. There were 29 young women who suffered from POTS. The exercise frequency was obtained by interview. Data was statistically analyzed using Spearman Correlation test. Result: The subjects’, who tested positive for POTS didn’t perform regular exercise. The Spearman correlation test showed there was a moderate negative correlation between exercise frequency and POTS in young women (r = -0.487, p < 0.00). Conclusion: There is a moderate reverse correlation between exercise frequency and POTS in young women. Further studies are suggested to develop an exercise program for young who suffered from POTS.Keywords: POTS, autonomic dysfunction, exercise frequency, young woman
Procedia PDF Downloads 55713982 The Association of Estrogen Receptor Alpha Xbai Gg Genotype and Severe Preeclampsia
Authors: Saeedeh Salimi, Farzaneh Farajian- Mashhadi, Ehsan Tabatabaei, Mahnaz Shahrakipoor, Minoo Yaghmaei, Mojgan Mokhtari
Abstract:
Purpose: Estrogen receptor-α (ERα) plays an essential role in the adaptation of increased uterine blood flow during gestation. Therefore ERα gene could be a possible candidate for preeclampsia(PE) susceptibility. In the current study, we aimed to investigate the association of the ERα gene polymorphisms and PE in an Iranian population. Methods: One hundred ninety-two pregnant women with PE and 186 normotensive women were genotyped for ERα gene (PvuII and XbaI) polymorphisms by PCR-RFLP method. Results: The frequency of alleles and genotypes of ERα PvuII and XbaI polymorphisms were not different between PE and normotensive control women. However, higher frequency of GG genotype was observed in women with severe PE compared to mild PE (OR, 1.8 [95% CI, 1.1 to 3]; P = 0.02) and in severe PE compared to normotensive women [OR= 1.8(1.1-3), P=0.02] after adjusting for age, ethnicity and primiparity. Conclusions: The GG genotype of ERα XbaI polymorphism could be a genetic risk factor for PE predisposition.Keywords: estrogen receptor-α, polymorphism, gene, preeclampsia
Procedia PDF Downloads 30913981 Fast Terminal Synergetic Converter Control
Authors: Z. Bouchama, N. Essounbouli, A. Hamzaoui, M. N. Harmas
Abstract:
A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability.Keywords: dc-dc buck converter, synergetic control, finite time convergence, terminal synergetic control, fast terminal synergetic control, Lyapunov
Procedia PDF Downloads 46013980 Simulation and Analysis of Inverted Pendulum Controllers
Authors: Sheren H. Salah
Abstract:
The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)
Procedia PDF Downloads 55513979 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model
Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus
Abstract:
This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method
Procedia PDF Downloads 48313978 Perception of the Frequency and Importance of Peer Social Support by Students with Special Educational Needs in Inclusive Education
Authors: Lucia Hrebeňárová, Jarmila Žolnová, Veronika Palková
Abstract:
Inclusive education of students with special educational needs has been on the increase in the Slovak Republic, facing many challenges. Preparedness of teachers for inclusive education is one of the most frequent issues; teachers lack skills when it comes to the use of effective instruction depending on the individual needs of students, improvement of classroom management and social skills, and support of inclusion within the classroom. Social support is crucial for the school success of students within inclusive settings. The aim of the paper is to analyse perception of the frequency and importance of peer social support by students with special educational needs in inclusive education. The data collection tool used was the Child and Adolescent Social Support Scale (CASSS). The research sample consisted of 953 fourth grade students – 141 students with special educational needs educated in an inclusive setting and 812 students of the standard population. No significant differences were found between the students with special educational needs and the students without special educational needs in an inclusive setting when it comes to the perception of frequency and importance of social support of schoolmates and friends. However, the perception of frequency and importance of a friend’s social support was higher than the perception of frequency and importance of a classmate’s social support in both groups of students.Keywords: inclusive education, peer social support, peer, student with special eEducational needs
Procedia PDF Downloads 42313977 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results
Authors: Jiri Brozovsky
Abstract:
Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity
Procedia PDF Downloads 41613976 Experimental Analysis of Tuned Liquid Damper (TLD) for High Raised Structures
Authors: Mohamad Saberi, Arash Sohrabi
Abstract:
Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article, we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.Keywords: TLD, seismic table, structural system, Hunzer linear behaviour
Procedia PDF Downloads 33513975 Active Disturbance Rejection Control for Wind System Based on a DFIG
Authors: R. Chakib, A. Essadki, M. Cherkaoui
Abstract:
This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.Keywords: doubly fed induction generator (DFIG), active disturbance rejection control (ADRC), vector control, MPPT, extended state observer, back-to-back converter, wind turbine
Procedia PDF Downloads 48813974 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.Keywords: MATLAB, MPC, PID, quadcopter, simulink
Procedia PDF Downloads 7213973 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO
Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero
Abstract:
Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control
Procedia PDF Downloads 36613972 Steady State Rolling and Dynamic Response of a Tire at Low Frequency
Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa
Abstract:
Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis
Procedia PDF Downloads 36713971 Parasitic Capacitance Modeling in Pulse Transformer Using FEA
Authors: D. Habibinia, M. R. Feyzi
Abstract:
Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency
Procedia PDF Downloads 51513970 Effects of Bedside Rehabilitation of Stroke Patients in Activities and Daily Living Function
Authors: Chiung-Hua Chan, Fang-Yuan Chang, Li-Chi Huang
Abstract:
Stroke patients received regular rehabilitation therapy have measurable advancement in muscle strength, balance, control upper and lower physical activity, walking speed and endurance. This study aimed to investigate the relationship between increases in bedside rehabilitation time and the function of activities and daily living (ADL) in stroke patients. The study was quasi-experimental research design and randomized sampling. The researcher collected 12 stroke patients of stroke patients transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. All participants then were assigned to case group and control group. Data collection was through direct observation of assessment ADL of stroke patients by researchers on Day 1. Case group received regular rehabilitation, exercises in increase of bedside rehabilitation schedules exercise programs by ward nurses. Bedside rehabilitation exercise content with physical, functional and linguistic frequency and time, Control group only give routine rehabilitation schedule care. This was a randomized study performed in 12 patients who were stroke patients and transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. First, the researcher explained the purpose and method of the study to the patients or the family members. All participants completed a consent informed before participation. Patients were randomly assigned to a ‘bedside rehabilitation program’ (BRP) group and a control (C) group. The BRP group received bedside rehabilitation schedules exercise programs by ward nurses. while the C group did not. Both groups received routine rehabilitation schedule. The Functional Independence Measure was used to measure outcome at the first, 14th and the 28th day of rehabilitation ward admitted. Data were analyzed using SPSS 22.0. After implementation of standardized ‘‘bedside rehabilitation program’, the results were: (1) the increasing of bedside rehabilitation had significant difference (p<.05) in promotion ADL function of stroke patients (2) the extend time of the bedside rehabilitation has significant difference (p<.05) in promotion ADL function of stroke patients compared with the control group. This study demonstrated that the ‘bedside rehabilitation program’ enhanced the ADL function in stroke patients. The nurses and rehabilitation ward managers need to understand that the extend time and frequency of rehabilitation provide a chance to enhanced the ADL function of stroke patients.Keywords: stroke, bedside rehabilitation, functional activity, ADL
Procedia PDF Downloads 13613969 Visitors’ Attitude towards the Service Marketing Mix and Frequency of Visits to Bangpu Recreation Centre, Thailand
Authors: Siri-Orn Champatong
Abstract:
This research paper was aimed to examine the relationship between visitors’ attitude towards the service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre. Based on a large and uncalculated population, the number of samples was calculated according to the formula to obtain a total of 385 samples. In collecting the samples, systematic random sampling was applied and by using of a Likert five-scale questionnaire for, a total of 21 days to collect the needed information. Mean, Standard Deviation, and Pearson’s basic statistical correlations were utilized in analyzing the data. This study discovered a high level of visitors’ attitude product and service of Bangpu Recreation Centre, price, place, promotional activities, people who provided service and physical evidence of the centre. The attitude towards process of service was discovered to be at a medium level. Additionally, the finding of an examination of a relationship between visitors’ attitude towards service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre presented that product and service, people, physical evidence and process of service provision showed a relationship with the visitors’ frequency of visit to the centre per year.Keywords: frequency of visit, visitor, service marketing mix, Bangpu Recreation Centre
Procedia PDF Downloads 37113968 Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms
Authors: Alexander Winkler, Jozef Suchý
Abstract:
This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation.Keywords: robot force control, stiffness control, damping control, impedance control, stability
Procedia PDF Downloads 52013967 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control
Procedia PDF Downloads 48113966 An investigation of the High-frequency Isolation Performance of Quasi-Zero-Stiffness Vibration Isolators
Authors: Chen Zhang, Yongpeng Gu, Xiaotian Li
Abstract:
Quasi-zero-stiffness (QZS) vibration isolation technology has garnered significant attention in both academia and industry, which enables ultra-low-frequency vibration isolation. In modern industries, such as shipbuilding and aerospace, rotating machinery generates vibrations over a wide frequency range, thus imposing more stringent requirements on vibration isolation technologies. These technologies must not only achieve ultra-low starting isolation frequencies but also provide effective isolation across mid- to high-frequency ranges. However, existing research on QZS vibration isolators primarily focuses on frequency ranges below 50 Hz. Moreover, studies have shown that in the mid-to high-frequency ranges, QZS isolators tend to generate resonance peaks that adversely affect their isolation performance. This limitation significantly restricts the practical applicability of QZS isolation technology. To address this issue, the present study investigates the high-frequency isolation performance of two typical QZS isolators: the mechanism type three-spring QZS isolator mechanism and the structure and bowl-shaped QZS isolator structure. First, the parameter conditions required to achieve quasi-zero stiffness characteristics for two isolators are derived based on static mechanical analysis. The theoretical transmissibility characteristics are then calculated using the harmonic balance method. Three-dimensional finite element models of two QZS isolators are developed using ABAQUS simulation software, and transmissibility curves are computed for the 0-500 Hz frequency range. The results indicate that the three-spring QZS mechanism exhibits multiple higher-order resonance peaks in the mid-to high-frequency ranges due to the higher-order models of the springs. Springs with fewer coils and larger diameters can shift the higher-order modals to higher frequencies but cannot entirely eliminate their occurrence. In contrast, the bowl-shaped QZS isolator, through shape optimization using a spline-based representation, effectively mitigates the generation of higher-order resonance modes, resulting in superior isolation performance in the mid-to high-frequency ranges. This study provides essential theoretical insights for optimizing the vibration isolation performance of QZS technologies in complex, wide-frequency vibration environments, offering significant practical value for their application.Keywords: quasi-zero-stiffness, wide-frequency vibration, vibration isolator, transmissibility
Procedia PDF Downloads 1213965 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis
Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh
Abstract:
The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent
Procedia PDF Downloads 33213964 Comparative Investigation of Miniaturized Antennas Based on Chiral Slotted Ground Plane
Authors: Oussema Tabbabi, Mondher Laabidi, Fethi Choubani, J. David
Abstract:
This study presents a miniaturized antenna based on chiral metamaterials slotted ground plane. To decrease resonant frequency while keeping the antennas physical dimensions the same, we propose a two novel patch antennas with double Z and cross slots on the ground plane. The length of the each type of slot are also altered to investigate the effect on miniaturization performance. Resonance frequency reduction has been achieved nearly to 30% and 23% as well as size reduction of almost 28% and 22% for the double Z and the cross shape respectively.Keywords: chiral metamaterials, miniaturized antenna, miniaturization, resonance frequency
Procedia PDF Downloads 45713963 Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse
Authors: Ping Li, Bing Feng, Junpu Zhao, Xudong Xie, Dangpeng Xu, Kuixing Zheng, Qihua Zhu, Xiaofeng Wei
Abstract:
In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility.Keywords: inertial confinement fusion, laser pulse control, beam spatio-temporal multiplexing, power balance
Procedia PDF Downloads 14813962 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator
Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui
Abstract:
Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator
Procedia PDF Downloads 39713961 Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material
Authors: Qingtao Yu, Guojia Ma
Abstract:
Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly.Keywords: frequency selective surface, infrared-radar compatible, low infrared emissivity, radar-absorbing material, patterns, structures
Procedia PDF Downloads 129