Search results for: tensor deep stacking neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5453

Search results for: tensor deep stacking neural networks

2813 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration

Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad

Abstract:

In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.

Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands

Procedia PDF Downloads 63
2812 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor

Procedia PDF Downloads 221
2811 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle

Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.

Abstract:

In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.

Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.

Procedia PDF Downloads 74
2810 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 375
2809 Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana

Authors: Shaibu Baanni Azumah, William Adzawla

Abstract:

Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.

Keywords: efficiency, rice farmers, stochastic frontier, UDP technology

Procedia PDF Downloads 409
2808 Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery

Authors: Ranjot Kaur, Om P. Katare, Anupama Sharma, Sarah R. Dennison, Kamalinder K. Singh, Bhupinder Singh

Abstract:

Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis.

Keywords: dipalmitoylphosphatidylcholine, nebulization, DPPC monolayers, quality-by-design

Procedia PDF Downloads 143
2807 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 55
2806 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 120
2805 Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell

Authors: Mazouz Halima, Belghachi Abdrahmane

Abstract:

Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure.

Keywords: InP solar cell, p/n and n/p structure, electron irradiation, output parameters

Procedia PDF Downloads 550
2804 Hydrocarbons and Diamondiferous Structures Formation in Different Depths of the Earth Crust

Authors: A. V. Harutyunyan

Abstract:

The investigation results of rocks at high pressures and temperatures have revealed the intervals of changes of seismic waves and density, as well as some processes taking place in rocks. In the serpentinized rocks, as a consequence of dehydration, abrupt changes in seismic waves and density have been recorded. Hydrogen-bearing components are released which combine with carbon-bearing components. As a result, hydrocarbons formed. The investigated samples are smelted. Then, geofluids and hydrocarbons migrate into the upper horizons of the Earth crust by the deep faults. Then their differentiation and accumulation in the jointed rocks of the faults and in the layers with collecting properties takes place. Under the majority of the hydrocarbon deposits, at a certain depth, magmatic centers and deep faults are recorded. The investigation results of the serpentinized rocks with numerous geological-geophysical factual data allow understanding that hydrocarbons are mainly formed in both the offshore part of the ocean and at different depths of the continental crust. Experiments have also shown that the dehydration of the serpentinized rocks is accompanied by an explosion with the instantaneous increase in pressure and temperature and smelting the studied rocks. According to numerous publications, hydrocarbons and diamonds are formed in the upper part of the mantle, at the depths of 200-400km, and as a consequence of geodynamic processes, they rise to the upper horizons of the Earth crust through narrow channels. However, the genesis of metamorphogenic diamonds and the diamonds found in the lava streams formed within the Earth crust, remains unclear. As at dehydration, super high pressures and temperatures arise. It is assumed that diamond crystals are formed from carbon containing components present in the dehydration zone. It can be assumed that besides the explosion at dehydration, secondary explosions of the released hydrogen take place. The process is naturally accompanied by seismic phenomena, causing earthquakes of different magnitudes on the surface. As for the diamondiferous kimberlites, it is well-known that the majority of them are located within the ancient shield and platforms not obligatorily connected with the deep faults. The kimberlites are formed at the shallow location of dehydrated masses in the Earth crust. Kimberlites are younger in respect of containing ancient rocks containing serpentinized bazites and ultrbazites of relicts of the paleooceanic crust. Sometimes, diamonds containing water and hydrocarbons showing their simultaneous genesis are found. So, the geofluids, hydrocarbons and diamonds, according to the new concept put forward, are formed simultaneously from serpentinized rocks as a consequence of their dehydration at different depths of the Earth crust. Based on the concept proposed by us, we suggest discussing the following: -Genesis of gigantic hydrocarbon deposits located in the offshore area of oceans (North American, Mexican Gulf, Cuanza-Kamerunian, East Brazilian etc.) as well as in the continental parts of different mainlands (Kanadian-Arctic Caspian, East Siberian etc.) - Genesis of metamorphogenic diamonds and diamonds in the lava streams (Guinea-Liberian, Kokchetav, Kanadian, Kamchatka-Tolbachinian, etc.).

Keywords: dehydration, diamonds, hydrocarbons, serpentinites

Procedia PDF Downloads 340
2803 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 80
2802 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 107
2801 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
2800 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality

Authors: Heichia Wang, Yalan Chao

Abstract:

Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.

Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network

Procedia PDF Downloads 128
2799 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates

Authors: Takashi Mitsuishi

Abstract:

Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).

Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation

Procedia PDF Downloads 364
2798 Identifying the Faces of colonialism: An Analysis of Gender Inequalities in Economic Participation in Pakistan through Postcolonial Feminist Lens

Authors: Umbreen Salim, Anila Noor

Abstract:

This paper analyses the influences and faces of colonialism in women’s participation in economic activity in postcolonial Pakistan, through postcolonial feminist economic lens. It is an attempt to probe the shifts in gender inequalities that have existed in three stages; pre-colonial, colonial, and postcolonial times in the Indo-Pak subcontinent. It delves into an inquiry of pre-colonial as it is imperative to understand the situation and context before colonisation in order to assess the deviations associated with its onset. Hence, in order to trace gender inequalities this paper analyses from Mughal Era (1526-1757) that existed before British colonisation, then, the gender inequalities that existed during British colonisation (1857- 1947) and the associated dynamics and changes in women’s vulnerabilities to participate in the economy are examined. Followed by, the postcolonial (1947 onwards) scenario of discriminations and oppressions faced by women. As part of the research methodology, primary and secondary data analysis was done. Analysis of secondary data including literary works and photographs was carried out, followed by primary data collection using ethnographic approaches and participatory tools to understand the presence of coloniality and gender inequalities embedded in the social structure through participant’s real-life stories. The data is analysed using feminist postcolonial analysis. Intersectionality has been a key tool of analysis as the paper delved into the gender inequalities through the class and caste lens briefly touching at religion. It is imperative to mention the significance of the study and very importantly the practical challenges as historical analysis of 18th and 19th century is involved. Most of the available work on history is produced by a) men and b) foreigners and mostly white authors. Since the historical analysis is mostly by men the gender analysis presented misses on many aspects of women’s issues and since the authors have been mostly white European gives it as Mohanty says, ‘under western eyes’ perspective. Whereas the edge of this paper is the authors’ deep attachment, belongingness as lived reality and work with women in Pakistan as postcolonial subjects, a better position to relate with the social reality and understand the phenomenon. The study brought some key results as gender inequalities existed before colonisation when women were hidden wheel of stable economy which was completely invisible. During the British colonisation, the vulnerabilities of women only increased and as compared to men their inferiority status further strengthened. Today, the postcolonial woman lives in deep-rooted effects of coloniality where she is divided in class and position within the class, and she has to face gender inequalities within household and in the market for economic participation. Gender inequalities have existed in pre-colonial, during colonisation and postcolonial times in Pakistan with varying dynamics, degrees and intensities for women whereby social class, caste and religion have been key factors defining the extent of discrimination and oppression. Colonialism may have physically ended but the coloniality remains and has its deep, broad and wide effects in increasing gender inequalities in women’s participation in the economy in Pakistan.

Keywords: colonialism, economic participation, gender inequalities, women

Procedia PDF Downloads 209
2797 Searching for the ‘Why’ of Gendered News: Journalism Practices and Societal Contexts

Authors: R. Simões, M. Silveirinha

Abstract:

Driven by the need to understand the results of previous research that clearly shows deep unbalances of the media discourses about women and men in spite of the growing numbers of female journalists, our paper aims to progress from the 'what' to the 'why' of these unbalanced representations. Furthermore, it does so at a time when journalism is undergoing a dramatic change in terms of professional practices and in how media organizations are organized and run, affecting women in particular. While some feminist research points to the fact that female and male journalists evaluate the role of the news and production methods in similar ways feminist theorizing also suggests that thought and knowledge are highly influenced by social identity, which is also inherently affected by the experiences of gender. This is particularly important at a time of deep societal and professional changes. While there are persuasive discussions of gender identities at work in newsrooms in various countries studies on the issue will benefit from cases that focus on the particularities of local contexts. In our paper, we present one such case: the case of Portugal, a country hit hard by austerity measures that have affected all cultural industries including journalism organizations, already feeling the broader impacts of the larger societal changes of the media landscape. Can we gender these changes? How are they felt and understood by female and male journalists? And how are these discourses framed by androcentric, feminist and post-feminist sensibilities? Foregrounding questions of gender, our paper seeks to explore some of the interactions of societal and professional forces, identifying their gendered character and outlining how they shape journalism work in general and the production of unbalanced gender representations in particular. We do so grounded in feminist studies of journalism as well as feminist organizational and work studies, looking at a corpus of 20 in-depth interviews of female and male Portuguese journalists. The research findings illustrate how gender in journalism practices interacts with broader experiences of the cultural and economic contexts and show the ambivalences of these interactions in news organizations.

Keywords: gender, journalism, newsroom culture, Portuguese journalists

Procedia PDF Downloads 399
2796 Agroecology: Rethink the Local in the Global to Promote the Creation of Novelties

Authors: Pauline Cuenin, Marcelo Leles Romarco Oliveira

Abstract:

Based on their localities and following their ecological rationality, family-based farmers have experimented, adapted and innovated to improve their production systems continuously for millennia. With the technological package transfer processes of the so-called Green Revolution for agricultural holdings, farmers have become increasingly dependent on ready-made "recipes" built from so-called "universal" and global knowledge to face the problems that emerge in the management of local agroecosystems, thus reducing their creative and experiential capacities. However, the production of novelties within farms is fundamental to the transition to more sustainable agro food systems. In fact, as the fruits of local knowledge and / or the contextualization of exogenous knowledge, novelties are seen as seeds of transition. By presenting new techniques, new organizational forms and epistemological approaches, agroecology was pointed out as a way to encourage and promote the creative capacity of farmers. From this perspective, this theoretical work aims to analyze how agroecology encourages the innovative capacity of farmers, and in general, the production of novelties. For this, an analysis was made of the theoretical and methodological bases of agroecology through a literature review, specifically looking for the way in which it articulates the local with the global, complemented by an analysis of agro ecological Brazilian experiences. It was emphasized that, based on the peasant way of doing agriculture, that is, on ecological / social co-evolution or still called co-production (interaction between human beings and living nature), agroecology recognizes and revalues peasant involves the deep interactions of the farmer with his site (bio-physical and social). As a "place science," practice and movement, it specifically takes into consideration the local and empirical knowledge of farmers, which allows questioning and modifying the paradigms that underpin the current agriculture that have disintegrated farmers' creative processes. In addition to upgrade the local, agroecology allows the dialogue of local knowledge with global knowledge, essential in the process of changes to get out of the dominant logic of thought and give shape to new experiences. In order to reach this articulation, agroecology involves new methodological focuses seeking participatory methods of study and intervention that express themselves in the form of horizontal spaces of socialization and collective learning that involve several actors with different knowledge. These processes promoted by agroecology favor the production of novelties at local levels for expansion at other levels, such as the global, through trans local agro ecological networks.

Keywords: agroecology, creativity, global, local, novelty

Procedia PDF Downloads 223
2795 Analysis of the Impact of Foreign Direct Investment on the Integration of the Automotive Industry of Iran into Global Production Networks

Authors: Bahareh Mostofian

Abstract:

Foreign Direct Investment (FDI) has long been recognized as a crucial driver of economic growth and development in less-developed countries and their integration into Global Production Networks (GPNs). FDI not only brings capital from the core countries but also technology, innovation, and know-how knowledge that can upgrade the capabilities of host automotive industries. On the other hand, FDI can also have negative impacts on host countries if it leads to significant import dependency. In the case of the Iranian automotive sector, the industry greatly benefited from FDI, with Western carmakers dominating the market. Over time, various types of know-how knowledge, including joint ventures (JVs), trade licenses, and technical assistance, have been provided, helping Iran upgrade its automotive industry. While after the severe geopolitical obstacles imposed by both the EU and the U.S., the industry became over-reliant on the car and spare parts imports, and the lack of emphasis on knowledge transfer further affected the growth and development of the Iranian automotive sector. To address these challenges, current research has adopted a descriptive-analytical methodology to illustrate the gradual changes accrued with foreign suppliers through FDI. The research finding shows that after the two-phase imposed sanctions, the detrimental linkages created by overreliance on the car and spare parts imports without any industrial upgrading negatively affected the growth and development of the national and assembled products of the Iranian automotive sector.

Keywords: less-developed country, FDI, GPNs, automotive industry, Iran

Procedia PDF Downloads 73
2794 Twitter Ego Networks and the Capital Markets: A Social Network Analysis Perspective of Market Reactions to Earnings Announcement Events

Authors: Gregory D. Saxton

Abstract:

Networks are everywhere: lunch ties among co-workers, golfing partnerships among employees, interlocking board-of-director connections, Facebook friendship ties, etc. Each network varies in terms of its structure -its size, how inter-connected network members are, and the prevalence of sub-groups and cliques. At the same time, within any given network, some network members will have a more important, more central position on account of their greater number of connections or their capacity as “bridges” connecting members of different network cliques. The logic of network structure and position is at the heart of what is known as social network analysis, and this paper applies this logic to the study of the stock market. Using an array of data analytics and machine learning tools, this study will examine 17 million Twitter messages discussing the stocks of the firms in the S&P 1,500 index in 2018. Each of these 1,500 stocks has a distinct Twitter discussion network that varies in terms of core network characteristics such as size, density, influence, norms and values, level of activity, and embedded resources. The study’s core proposition is that the ultimate effect of any market-relevant information is contingent on the characteristics of the network through which it flows. To test this proposition, this study operationalizes each of the core network characteristics and examines their influence on market reactions to 2018 quarterly earnings announcement events.

Keywords: data analytics, investor-to-investor communication, social network analysis, Twitter

Procedia PDF Downloads 122
2793 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 151
2792 Analysis of the Occurrence of Hydraulic Fracture Phenomena in Roudbar Lorestan Dam

Authors: Masoud Ghaemi, MohammadJafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

According to the statistics of the International Committee on Large Dams, internal erosion and piping (scour) are major causes of the destruction of earth-fill dams. If such dams are constructed in narrow valleys, the valley walls will increase the arching of the dam body due to the transfer of vertical and horizontal stresses, so the occurrence of hydraulic fracturing in these embankments is more likely. Roudbar Dam in Lorestan is a clay-core pebble earth-fill dam constructed in a relatively narrow valley in western Iran. Three years after the onset of impoundment, there has been a fall in dam behavior. Evaluation of the dam behavior based on the data recorded on the instruments installed inside the dam body and foundation confirms the occurrence of internal erosion in the lower and adjacent parts of the core on the left support (abutment). The phenomenon of hydraulic fracturing is one of the main causes of the onset of internal erosion in this dam. Accordingly, the main objective of this paper is to evaluate the validity of this hypothesis. To evaluate the validity of this hypothesis, the dam behavior during construction and impoundment has been first simulated with a three-dimensional numerical model. Then, using validated empirical equations, the safety factor of the occurrence of hydraulic fracturing phenomenon upstream of the dam score was calculated. Then, using the artificial neural network, the failure time of the given section was predicted based on the maximum stress trend created. The study results show that steep slopes of valley walls, sudden changes in coefficient, and differences in compressibility properties of dam body materials have caused considerable stress transfer from core to adjacent valley walls, especially at its lower levels. This has resulted in the coefficient of confidence of the occurrence of hydraulic fracturing in each of these areas being close to one in each of the empirical equations used.

Keywords: arching, artificial neural network, FLAC3D, hydraulic fracturing, internal erosion, pore water pressure

Procedia PDF Downloads 177
2791 The Effect of Newspaper Reporting on COVID-19 Vaccine Hesitancy: A Randomised Controlled Trial

Authors: Anna Rinaldi, Pierfrancesco Dellino

Abstract:

COVID-19 vaccine hesitancy can be observed at different rates in different countries. In June 2021, 1,068 people were surveyed in France and Italy to inquire about individual potential acceptance, focusing on time preferences in a risk-return framework: having the vaccination today, in a month, and in 3 months; perceived risks of vaccination and COVID-19; and expected benefit of the vaccine. A randomized controlled trial was conducted to understand how everyday stimuli like fact-based news about vaccines impact an audience's acceptance of vaccination. The main experiment involved two groups of participants and two different articles about vaccine-related thrombosis taken from two Italian newspapers. One article used a more abstract description and language, and the other used a more anecdotal description and concrete language; each group read only one of these articles. Two other groups were assigned categorization tasks; one was asked to complete a concrete categorization task, and the other an abstract categorization task. Individual preferences for vaccination were found to be variable and unstable over time, and individual choices of accepting, refusing, or delaying could be affected by the way news is written. In order to understand these dynamic preferences, the present work proposes a new model based on seven categories of human behaviors that were validated by a neural network. A treatment effect was observed: participants who read the articles shifted to vaccine hesitancy categories more than participants assigned to other treatments and control. Furthermore, there was a significant gender effect, showing that the type of language leading to a lower hesitancy rate for men is correlated with a higher hesitancy rate for women and vice versa. This outcome should be taken into consideration for an appropriate gender-based communication campaign aimed at achieving herd immunity. The trial was registered at ClinicalTrials.gov NCT05582564 (17/10/2022).

Keywords: vaccine hesitancy, risk elicitation, neural network, covid19

Procedia PDF Downloads 85
2790 Investigating Non-suicidal Self-Injury Discussions on Twitter

Authors: Muhammad Abubakar Alhassan, Diane Pennington

Abstract:

Social networking sites have become a space for people to discuss public health issues such as non-suicidal self-injury (NSSI). There are thousands of tweets containing self-harm and self-injury hashtags on Twitter. It is difficult to distinguish between different users who participate in self-injury discussions on Twitter and how their opinions change over time. Also, it is challenging to understand the topics surrounding NSSI discussions on Twitter. We retrieved tweets using #selfham and #selfinjury hashtags and investigated those from the United kingdom. We applied inductive coding and grouped tweeters into different categories. This study used the Latent Dirichlet Allocation (LDA) algorithm to infer the optimum number of topics that describes our corpus. Our findings revealed that many of those participating in NSSI discussions are non-professional users as opposed to medical experts and academics. Support organisations, medical teams, and academics were campaigning positively on rais-ing self-injury awareness and recovery. Using LDAvis visualisation technique, we selected the top 20 most relevant terms from each topic and interpreted the topics as; children and youth well-being, self-harm misjudgement, mental health awareness, school and mental health support and, suicide and mental-health issues. More than 50% of these topics were discussed in England compared to Scotland, Wales, Ireland and Northern Ireland. Our findings highlight the advantages of using the Twitter social network in tackling the problem of self-injury through awareness. There is a need to study the potential risks associated with the use of social networks among self-injurers.

Keywords: self-harm, non-suicidal self-injury, Twitter, social networks

Procedia PDF Downloads 132
2789 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data

Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito

Abstract:

Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.

Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement

Procedia PDF Downloads 390
2788 Mental Wellbeing Using Music Intervention: A Case Study of Therapeutic Role of Music, From Both Psychological and Neurocognitive Perspectives

Authors: Medha Basu, Kumardeb Banerjee, Dipak Ghosh

Abstract:

After the massive blow of the COVID-19 pandemic, several health hazards have been reported all over the world. Serious cases of Major Depressive Disorder (MDD) are seen to be common in about 15% of the global population, making depression one of the leading mental health diseases, as reported by the World Health Organization. Various psychological and pharmacological treatment techniques are regularly being reported. Music, a globally accepted mode of entertainment, is often used as a therapeutic measure to treat various health conditions. We have tried to understand how Indian Classical Music can affect the overall well-being of the human brain. A case study has been reported here, where a Flute-rendition has been chosen from a detailed audience response survey, and the effects of that clip on human brain conditions have been studied from both psychological and neural perspectives. Taking help from internationally-accepted depression-rating scales, two questionnaires have been designed to understand both the prolonged and immediate effect of music on various emotional states of human lives. Thereafter, from EEG experiments on 5 participants using the same clip, the parameter ‘ALAY’, alpha frontal asymmetry (alpha power difference of right and left frontal hemispheres), has been calculated. Works of Richard Davidson show that an increase in the ‘ALAY’ value indicates a decrease in depressive symptoms. Using the non-linear technique of MFDFA on EEG analysis, we have also calculated frontal asymmetry using the complexity values of alpha-waves in both hemispheres. The results show a positive correlation between both the psychological survey and the EEG findings, revealing the prominent role of music on the human brain, leading to a decrease in mental unrest and an increase in overall well-being. In this study, we plan to propose the scientific foundation of music therapy, especially from a neurocognition perspective, with appropriate neural bio-markers to understand the positive and remedial effects of music on the human brain.

Keywords: music therapy, EEG, psychological survey, frontal alpha asymmetry, wellbeing

Procedia PDF Downloads 41
2787 Food Safety and Quality Assurance and Skills Development among Farmers in Georgia

Authors: Kakha Nadiardze, Nana Phirosmanashvili

Abstract:

The goal of this paper is to present the problems of lack of information among farmers in food safety. Global food supply chains are becoming more and more diverse, making traceability systems much harder to implement across different food markets. In this abstract, we will present our work for analyzing the key developments in Georgian food market from regulatory controls to administrative procedures to traceability technologies. Food safety and quality assurance are most problematic issues in Georgia as food trade networks become more and more complex, food businesses are under more and more pressure to ensure that their products are safe and authentic. The theme follow-up principles from farm to table must be top-of-mind for all food manufacturers, farmers and retailers. Following the E. coli breakout last year, as well as more recent cases of food mislabeling, developments in food traceability systems is essential to food businesses if they are to present a credible brand image. Alongside this are the ever-developing technologies in food traceability networks, technologies that manufacturers and retailers need to be aware of if they are to keep up with food safety regulations and avoid recall. How to examine best practice in food management is the main question in order to protect company brand through safe and authenticated food. We are working with our farmers to work with our food safety experts and technology developers throughout the food supply chain. We provide time by time food analyses on heavy metals, pesticide residues and different pollutants. We are disseminating information among farmers how the latest food safety regulations will impact the methods to use to identify risks within their products.

Keywords: food safety, GMO, LMO, E. coli, quality

Procedia PDF Downloads 514
2786 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 125
2785 3G or 4G: A Predilection for Millennial Generation of Indian Society

Authors: Rishi Prajapati

Abstract:

3G is the abbreviation of third generation of wireless mobile telecommunication technologies. 3G is a mode that finds application in wireless voice telephony, mobile internet access, fixed wireless internet access, video calls and mobile TV. It also provides mobile broadband access to smartphones and mobile modems in laptops and computers. The first 3G networks were introduced in 1998, followed by 4G networks in 2008. 4G is the abbreviation of fourth generation of wireless mobile telecommunication technologies. 4G is termed to be the advanced form of 3G. 4G was firstly introduced in South Korea in 2007. Many abstracts have floated researches that depicted the diversity and similarity between the third and the fourth generation of wireless mobile telecommunications technology, whereas this abstract reflects the study that focuses on analyzing the preference between 3G versus 4G given by the elite group of the Indian society who are known as adolescents or the Millennial Generation aging from 18 years to 25 years. The Millennial Generation was chosen for this study as they have the easiest access to the latest technology. A sample size of 200 adolescents was selected and a structured survey was carried out which had several closed ended as well as open ended questions, to aggregate the result of this study. It was made sure that the effect of environmental factors on the subjects was as minimal as possible. The data analysis comprised of primary data collection reflecting it as quantitative research. The rationale behind this research is to give brief idea of how 3G and 4G are accepted by the Millennial Generation in India. The findings of this research would materialize a framework which depicts whether Millennial Generation would prefer 4G over 3G or vice versa.

Keywords: fourth generation, wireless telecommunication technology, Indian society, millennial generation, market research, third generation

Procedia PDF Downloads 270
2784 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 60