Search results for: interval features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4661

Search results for: interval features

2021 Examining the Functional and Practical Aspects of Iranian Painting as a Visual-Identity Language in Iranian Graphics

Authors: Arezoo Seifollahi

Abstract:

One of the topics that is receiving a lot of attention in artistic circles and among Iran today and has been the subject of many conversations is the issue of Iranian graphics. In this research, the functional and practical aspects of Iranian painting as a visual-identity language in Iranian graphics have been investigated by relying on Iranian cultural and social posters in order to gain an understanding of the trend of contemporary graphic art in Iran and to help us reach the identity of graphics. In order to arrive at Iranian graphics, first, the issue of identity and what it is has been examined, and then this category has been addressed in Iran and throughout the history of this country in order to reveal the characteristics of the identity that has come to us today under the name of Iranian identity cognition. In the following, the search for Iranian identity in the art of this land, especially the art of painting, and then the art of contemporary painting and the search for identity in it have been discussed. After that, Iranian identity has been investigated in Iranian graphics. To understand Iranian graphics, after a brief description of its contemporary history, this art is examined at the considered time point. By using the inductive method of examining the posters of each course and taking into account the related cultural and social conditions, we tried to get a general and comprehensive understanding of the graphic features of each course.

Keywords: Iranian painting, graphic visual language, Iranian identity, social cultural poster

Procedia PDF Downloads 51
2020 Fear of Childbirth According to Parity

Authors: Ozlem Karabulutlu, Kiymet Yesilcicek Calik, Nazli Akar

Abstract:

Objectives: To examine fear of childbirth according to parity, gestational age, prenatal education, and obstetric history. Methods: The study was performed as a questionnaire design in a State Hospital in Kars, Turkey with 403 unselected pregnant who were recruited from the delivery unit. The data were collected via 3 questionnaires; the first with sociodemographic and obstetric features, the second with Wijma Delivery Expectance/Experience Questionnaire (W-DEQ) scale, and the third with the scale of Beck Anxiety Inventory (BAI). Results: The W-DEQ and BAI scores were higher in nulliparous than multiparous woman (W-DEQ 67.08±28.33, 59.87±26.91, P=0.039<0.05, BAI 18.97±9.5, 16.65±11.83, P=0.0009<0.05 respectively). Moreover, W-DEQ and BAI scores of pregnant whose gestational week was ≤37 / ≥41 and who didn’t receive training and had vaginal delivery was higher than those whose gestational week was 38-40 weeks and who received prenatal training and had cesarean delivery (W-DEQ 67.54±29.20, 56.44±22.59, 69.72±25.53 p<0.05, BAI 21.41±9.07; 15.77±11.20, 18.36±10.57 p<0.05 respectively). Both in nulliparous and multiparous, as W-DEQ score increases BAI score increases too (r=0.256; p=0.000<0.05). Conclusions: Severe fear of childbirth and anxiety was more common in nulliparous women, preterm and post-term pregnancy and who did not receive prenatal training and had vaginal delivery.

Keywords: Beck Anxiety Inventory (BAI), fear of birth, parity, pregnant women, Wijma Delivery Expectance/Experience Questionnaire (W-DEQ)

Procedia PDF Downloads 290
2019 Requirement Analysis for Emergency Management Software

Authors: Tomáš Ludík, Jiří Barta, Sabina Chytilová, Josef Navrátil

Abstract:

Emergency management is a discipline of dealing with and avoiding risks. Appropriate emergency management software allows better management of these risks and has a direct influence on reducing potential negative impacts. Although there are several emergency management software products in the Czech Republic, they cover user requirements from the emergency management field only partially. Therefore, the paper focuses on the issues of requirement analysis within development of emergency management software. Analysis of the current state describes the basic features and properties of user requirements for software development as well as basic methods and approaches for gathering these requirements. Then, the paper presents more specific mechanisms for requirement analysis based on chosen software development approach: structured, object-oriented or agile. Based on these experiences it is designed new methodology for requirement analysis. Methodology describes how to map user requirements comprehensively in the field of emergency management and thus reduce misunderstanding between software analyst and emergency manager. Proposed methodology was consulted with department of fire brigade and also has been applied in the requirements analysis for their current emergency management software. The proposed methodology has general character and can be used also in other specific areas during requirement analysis.

Keywords: emergency software, methodology, requirement analysis, stakeholders, use case diagram, user stories

Procedia PDF Downloads 540
2018 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
2017 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 266
2016 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India

Authors: Bharti Singh, Shri K. Singh

Abstract:

Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.

Keywords: child nutrition, India, NFHS, women’s empowerment

Procedia PDF Downloads 33
2015 Towards Logical Inference for the Arabic Question-Answering

Authors: Wided Bakari, Patrice Bellot, Omar Trigui, Mahmoud Neji

Abstract:

This article constitutes an opening to think of the modeling and analysis of Arabic texts in the context of a question-answer system. It is a question of exceeding the traditional approaches focused on morphosyntactic approaches. Furthermore, we present a new approach that analyze a text in order to extract correct answers then transform it to logical predicates. In addition, we would like to represent different levels of information within a text to answer a question and choose an answer among several proposed. To do so, we transform both the question and the text into logical forms. Then, we try to recognize all entailment between them. The results of recognizing the entailment are a set of text sentences that can implicate the user’s question. Our work is now concentrated on an implementation step in order to develop a system of question-answering in Arabic using techniques to recognize textual implications. In this context, the extraction of text features (keywords, named entities, and relationships that link them) is actually considered the first step in our process of text modeling. The second one is the use of techniques of textual implication that relies on the notion of inference and logic representation to extract candidate answers. The last step is the extraction and selection of the desired answer.

Keywords: NLP, Arabic language, question-answering, recognition text entailment, logic forms

Procedia PDF Downloads 342
2014 Analyzing Log File of Community Question Answering for Online Learning

Authors: Long Chen

Abstract:

With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.

Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training

Procedia PDF Downloads 441
2013 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 279
2012 Soil Micromorphological Analysis from the Hinterland of the Pharaonic Town, Sai Island, Sudan

Authors: Sayantani Neogi, Sean Taylor, Julia Budka

Abstract:

This paper presents the results of the investigations of soil/sediment sequences associated with the New Kingdom town at Sai Island, Sudan. During the course of this study, geoarchaeological surveys have been undertaken in the vicinity of this Pharaonic town within the island and the soil block samples for soil micromorphological analysis were accordingly collected. The intention was to better understand the archaeological site in its environmental context and the nature of the land surface prior to the establishment of the settlement. Soil micromorphology, a very powerful geoarchaeological methodology, is concerned with the description, measurement and interpretation of soil components and pedological features at a microscopic scale. Since soil profiles themselves are archives of their own history, soil micromorphology investigates the environmental and cultural signatures preserved within buried soils and sediments. A study of the thin sections from these soils/sediments has been able to provide robust data for providing interesting insights into the various nuances of this site, for example, the nature of the topography and existent environmental condition during the time of Pharaonic site establishment. These geoarchaeological evaluations have indicated that there is a varied hidden landscape context for this pharaonic settlement, which indicates a symbiotic relationship with the Nilotic environmental system.

Keywords: geoarchaeology, New Kingdom, Nilotic environment, soil micromorphology

Procedia PDF Downloads 264
2011 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 384
2010 Audit on the Use of T-MACS Decision Aid for Patients Presenting to ED with Chest Pain

Authors: Saurav Dhawan, Sanchit Bansal

Abstract:

Background T-MACS is a computer-based decision aid that ‘rules in’ and ‘rules out’ ACS using a combination of the presence or absence of six clinical features with only one biomarker measured on arrival: hs-cTnT. T-MACS had 99.3% negative predictive value and 98.7% sensitivity for ACS, ‘ruling out’ ACS in 40% of patients while ‘ruling in’ 5% at the highest risk. We aim at benchmarking the use of T-MACS which could help to conserve healthcare resources, facilitate early discharges, and ensure safe practice. Methodology Randomized retrospective data collection (n=300) was done from ED electronic records across 3 hospital sites within MFT over a period of 2 months. Data was analysed and compared by percentage for the usage of T-MACS, number of admissions/discharges, and in days for length of stay in hospital. Results MRI A&E had the maximum compliance with the use of T-MACS in the trust at 66%, with minimum admissions (44%) and an average length of stay of 1.825 days. NMG A&E had an extremely low compliance rate (8 %), with 75% admission and 3.387 days as the average length of stay. WYT A&E had no TMACS recorded, with a maximum of 79% admissions and the longest average length of stay at 5.07 days. Conclusion All three hospital sites had a RAG rating of ‘RED’ as per the compliance levels. The assurance level was calculated as ‘Very Limited’ across all sites. There was a positive correlation observed between compliance with TMACS and direct discharges from ED, thereby reducing the average length of stay for patients in the hospital.

Keywords: ACS, discharges, ED, T-MACS

Procedia PDF Downloads 58
2009 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries

Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova

Abstract:

Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.

Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling

Procedia PDF Downloads 274
2008 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
2007 HydroParks: Directives for Physical Environment Interventions Battling Childhood Overweight in Berlin, Germany

Authors: Alvaro Valera Sosa

Abstract:

Background: In recent years, childhood overweight and obesity have become an increasing and challenging phenomenon in Berlin and Germany in general. The highest shares of childhood overweight in Berlin are district localities within the inner city ring with lowest socio-economic levels and the highest number of migration background populations. Most factors explaining overweight and obesity are linked to individual dispositions and nutrition balances. Among various strategies, to target drinking behaviors of children and adolescents has been proven to be effective. On the one hand, encouraging the intake of water – which does not contain energy and thus may support a healthy weight status – on the other hand, reducing the consumption of sugar-containing beverages – which are linked to weight gain and obesity. Anyhow, these preventive approaches have mostly developed into individual or educational interventions widely neglecting environmental modifications. Therefore, little is known on how urban physical environment patterns and features can act as influence factors for childhood overweight. Aiming the development of a physical environment intervention tackling children overweight, this study evaluated urban situations surrounding public playgrounds in Berlin where the issue is evident. It verified the presence and state of physical environmental conditions that can be conducive for children to engage physical activity and water intake. Methods: The study included public playgrounds for children from 0-12 y/o within district localities with the highest prevalence of childhood overweight, highest population density, and highest mixed uses. A systematic observation was realized to describe physical environment patterns and features that may affect children health behavior leading to overweight. Neighborhood walkability for all age groups was assessed using the Walkability for Health framework (TU-Berlin). Playground physical environment conditions were evaluated using Active Living Research assessment sheets. Finally, the food environment in the playground’s pedestrian catchment areas was reviewed focusing on: proximity to suppliers offering sugar-containing beverages, and physical access for 5 y/o children and up to drinking water following the Drinking Fountains and Public Health guidelines of the Pacific Institute. Findings: Out of 114 locations, only 7 had a child population over 3.000. Three with the lowest socio-economic index and highest percentage of migration background were selected. All three urban situations presented similar walkability: large trafficked avenues without buffer bordering at least one side of the playground, and important block to block disconnections for active travel. All three playgrounds rated equipment conditions from good to very good. None had water fountains at the reach of a 5 y/o. and all presented convenience stores and/or fast food outlets selling sugar-containing beverages nearby the perimeter. Conclusion: The three playground situations selected are representative of Berlin locations where most factors that influence children overweight are found. The results delivered urban and architectural design directives for an environmental intervention, used to study children health-related behavior. A post-intervention evaluation could prove associations between designed spaces and children overweight rate reduction creating a precedent in public health interventions and providing novel strategies for the health sector.

Keywords: children overweight, evaluation research, public playgrounds, urban design, urban health

Procedia PDF Downloads 158
2006 In Search of Zero Beta Assets: Evidence from the Sukuk Market

Authors: Andrea Paltrinieri, Alberto Dreassi, Stefano Miani, Alex Sclip

Abstract:

The financial crises caused a collapse in prices of most asset classes, raising the attention on alternative investments such as Sukuk, a smaller, fast growing but often misunderstood market. We study diversification benefits of Sukuk, their correlation with other asset classes and the effects of their inclusion in investment portfolios of institutional and retail investors, through a comprehensive comparison of their risk/return profiles during and after the financial crisis. We find a beneficial performance adjusted for the specific volatility together with a lower correlation especially during the financial crisis. The distribution of Sukuk returns is positively skewed and leptokurtic, with a risk/return profile similarly to high yield bonds. Overall, our results suggest that Sukuk present diversification opportunities, a significant volatility-adjusted performance and lower correlations especially during the financial crisis. Our findings are relevant for a number of institutional investors. Long term investors, such as life insurers would benefit from Sukuk’s protective features during financial crisis yet keeping return and growth opportunities, whereas banks would gain due to their role of placers, advisors, market makers or underwriters.

Keywords: sukuk, zero beta asset, asset allocation, sukuk market

Procedia PDF Downloads 477
2005 Effectiveness of Electronic Learning for Continuing Interprofessional Education on Behavior Change of Healthcare Professionals: A Scoping Review

Authors: Kailin K. Zhang, Anne W. Thompson

Abstract:

Electronic learning for continuing professional education (CPE) and interprofessional education (IPE) in healthcare have been shown to improve learners’ satisfaction, attitudes, and performance. Yet, their impact on behavior change in healthcare professionals through continuing interprofessional education (CIPE) is less known. A scoping review of 32 articles from 2010 to 2020 was conducted using the Arksey and O’Malley framework across all healthcare settings. It focused on evaluating the effectiveness of CIPE on behavior change of healthcare professionals, as well as identifying course features of electronic CIPE programs facilitating behavior change. Eight different types of electronic learning methods, including online programs, tele-education, and social media, were identified as interventions. More than 35,542 healthcare professionals participated in the interventions. Electronic learning for CIPE led to positive behavior outcomes in 30 out of 32 studies, especially through a change in patient care practices. The most successful programs provided interactive and authentic learning experiences tailored to learners’ needs while promoting the direct application of what was learned in their clinical settings. Future research should include monitoring of sustained behavior changes and their resultant patient outcomes.

Keywords: behavior change, continuing interprofessional education, distance learning, electronic learning

Procedia PDF Downloads 144
2004 Local Female Dresses of Yuruk Community in Günaydin Village of Balikesir Region

Authors: Melek Tufan, Filiz Erden, E. Elhan Özus

Abstract:

Apparel is a fact that has assigned wide cultural functions in development process even if it basically aims at protection during mankind's cultural development and course of live. It is an important cultural element that has been shaped by ecological conditions, social and personal values, traditions, cultural and economic conditions, at the same time it is a bearer of culture. Customs and traditions that maintain culture create differences in dressing styles of the region. These differences create traditional clothing forms specific to each region, which are different from each other or show close similarities. Differences which have dominant features create sense of dress specific to community owned. Samples of a kind of dress worn over salwar, long shirt, jacket, salwar and underpants that are types of local female dresses available in houses of yuruk community in Günaydın village of Balıkesir region have been found. By examining local dresses in terms of material, color, cutting, sewing, ornamentation technique and ornamentation subject and it has been aimed to record them with observation forms and transfer them to the next generations.

Keywords: women, traditional, Turkish Culture, art, fashion

Procedia PDF Downloads 340
2003 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 125
2002 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 102
2001 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example

Authors: Guantao Bai

Abstract:

Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.

Keywords: computer vision, deep learning, public spaces, using features

Procedia PDF Downloads 70
2000 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 269
1999 Testing the Feasibility of a Positive Psychology Mobile Health App for College Electronic Cigarette Users

Authors: Allison Futter

Abstract:

Lifetime use of electronic cigarettes (EC) in college students has been estimated at around 50%; recent research shows Mobile Health (mHealth) technology is a promising tool to help address this public health issue, yet the majority of EC cessation mHealth tools found on smartphone app stores lack empirical support of their effectiveness. The Smiling Instead of Smoking (SiS) app is a positive psychology-based smartphone app for nondaily smokers. Due to previous success with brief, self-administered positive psychology exercises for cigarette cessation, this study examined the SiS App’s feasibility and effectiveness for EC cessation. Sixteen undergraduates used the SiS app for 3 weeks: one week before their quit date and 2 weeks after. As hypothesized, participants had significant declines in their craving and maintained pre-cessation levels of positive affect. There were no significant changes in dependency or self-efficacy. In the one-month follow-up survey, 38% of participants reported being abstinent. The app had an almost 4-star rating for its features (e.g., functionality, aesthetics, information, etc.) and participants reported moderate satisfaction with its use. Participants used the app, on average, 10 out of the 21 days of the prescribed app use. This study highlights the promise of mHealth support and positive psychology for EC cessation, adding to the understanding of possible ways to support EC quit attempts.

Keywords: e-cigarette cessation, mHealth, positive psychology, smartphone app

Procedia PDF Downloads 117
1998 Understanding Children’s Visual Attention to Personal Protective Equipment Using Eye-Tracking

Authors: Vanessa Cho, Janet Hsiao, Nigel King, Robert Anthonappa

Abstract:

Background: The personal protective equipment (PPE) requirements for health care workers (HCWs) have changed significantly during the COVID-19 pandemic. Aim: To ascertain, using eye-tracking technology, what children notice the most when seeing HCWs in various PPE. Design: A Tobii nano pro-eye-tracking camera tracked 156 children's visual attention while they viewed photographs of HCWs in various PPEs. Eye Movement analysis with Hidden Markov Models (EMHMM) was employed to analyse 624 recordings using two approaches, namely (i) data-driven where children's fixation determined the regions of interest (ROIs), and (ii) fixed ROIs where the investigators predefined the ROIs. Results: Two significant eye movement patterns, namely distributed(85.2%) and selective(14.7%), were identified(P<0.05). Most children fixated primarily on the face regardless of the different PPEs. Children fixated equally on all PPE images in the distributed pattern, while a strong preference for unmasked faces was evident in the selective pattern (P<0.01). Conclusion: Children as young as 2.5 years used a top-down visual search behaviour and demonstrated their face processing ability. Most children did not show a strong visual preference for a specific PPE, while a minority preferred PPE with distinct facial features, namely without masks and loupes.

Keywords: COVID-19, PPE, dentistry, pediatric

Procedia PDF Downloads 90
1997 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 478
1996 Flotation Recovery of Gold-Loaded Fine Activated Carbon Using Emulsified Diesel and Kerosene as Collectors

Authors: Emmanuel Jr. Ballad, Herman Mendoza

Abstract:

The recovery of fine activated carbon with adsorbed gold in the cyanidation tailings of a small-scale gold plant was investigated due to the high amount of gold present. In the study, collectors that were used are kerosene and diesel. Emulsification of the oils was done to improve its collecting property, thus also the recovery. It was found out that the best hydrophile lypophile balance (HLB) of emulsified diesel and kerosene oil is 13 and 12 respectively. The amount of surfactants (SPAN 20 and TWEEN 20) for the best stability of the emulsified oils was found to be 10% in both kerosene and diesel. Optical microscopy showed that the oil dispersion in the water forms spherical droplets like features. The higher the stability, the smaller the droplets and their number were increasing. The smaller droplets indicate better dispersion of oil in the water. Consequently, it will have a greater chance of oil and activated carbon particle interaction during flotation. Due to the interaction of dispersed oil phase with carbon, the hydrophobicity of the carbon will be improved and will be attached to the bubble. Thus, flotation recovery will be increased. Results showed that the recovery of the fine activated carbon using emulsified diesel or kerosene is three times more effective than using pure diesel or kerosene.

Keywords: emulsified oils, flotation, hydrophile lyophile balance, non-ionic surfactants

Procedia PDF Downloads 383
1995 Securing Online Voting With Blockchain and Smart Contracts

Authors: Anant Mehrotra, Krish Phagwani

Abstract:

Democratic voting is vital for any country, but current methods like ballot papers or EVMs have drawbacks, including transparency issues, low voter turnout, and security concerns. Blockchain technology offers a potential solution by providing a secure, decentralized, and transparent platform for e-voting. With features like immutability, security, and anonymity, blockchain combined with smart contracts can enhance trust and prevent vote tampering. This paper explores an Ethereum-based e-voting application using Solidity, showcasing a web app that prevents duplicate voting through a token-based system, while also discussing the advantages and limitations of blockchain in digital voting. Voting is a crucial component of democratic decision-making, yet current methods, like paper ballots, remain outdated and inefficient. This paper reviews blockchain-based voting systems, highlighting strategies and guidelines to create a comprehensive electronic voting system that leverages cryptographic techniques, such as zero-knowledge proofs, to enhance privacy. It addresses limitations of existing e-voting solutions, including cost, identity management, and scalability, and provides key insights for organizations looking to design their own blockchain-based voting systems.

Keywords: electronic voting, smart contracts, blockchain nased voting, security

Procedia PDF Downloads 10
1994 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 171
1993 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
1992 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect

Procedia PDF Downloads 356