Search results for: digital memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3894

Search results for: digital memory

1254 The OLOS® Way to Cultural Heritage: User Interface with Anthropomorphic Characteristics

Authors: Daniele Baldacci, Remo Pareschi

Abstract:

Augmented Reality and Augmented Intelligence are radically changing information technology. The path that starts from the keyboard and then, passing through milestones such as Siri, Alexa and other vocal avatars, reaches a more fluid and natural communication with computers, thus converting the dichotomy between man and machine into a harmonious interaction, now heads unequivocally towards a new IT paradigm, where holographic computing will play a key role. The OLOS® platform contributes substantially to this trend in that it infuses computers with human features, by transferring the gestures and expressions of persons of flesh and bones to anthropomorphic holographic interfaces which in turn will use them to interact with real-life humans. In fact, we could say, boldly but with a solid technological background to back the statement, that OLOS® gives reality to an altogether new entity, placed at the exact boundary between nature and technology, namely the holographic human being. Holographic humans qualify as the perfect carriers for the virtual reincarnation of characters handed down from history and tradition. Thus, they provide for an innovative and highly immersive way of experiencing our cultural heritage as something alive and pulsating in the present.

Keywords: digital cinematography, human-computer interfaces, holographic simulation, interactive museum exhibits

Procedia PDF Downloads 116
1253 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 72
1252 Identity and Access Management for Medical Cyber-Physical Systems: New Technology and Security Solutions

Authors: Abdulrahman Yarali, Machica McClain

Abstract:

In the context of the increasing use of Cyber-Physical Systems (CPS) across critical infrastructure sectors, this paper addresses a crucial and emerging topic: the integration of Identity and Access Management (IAM) with Internet of Things (IoT) devices in Medical Cyber-Physical Systems (MCPS). It underscores the significance of robust IAM solutions in the expanding interconnection of IoT devices in healthcare settings, leveraging AI, ML, DL, Zero Trust Architecture (ZTA), biometric authentication advancements, and blockchain technologies. The paper advocates for the potential benefits of transitioning from traditional, static IAM frameworks to dynamic, adaptive solutions that can effectively counter sophisticated cyber threats, ensure the integrity and reliability of CPS, and significantly bolster the overall security posture. The paper calls for strategic planning, collaboration, and continuous innovation to harness these benefits. By emphasizing the importance of securing CPS against evolving threats, this research contributes to the ongoing discourse on cybersecurity and advocates for a collaborative approach to foster innovation and enhance the resilience of critical infrastructure in the digital era.

Keywords: CPS, IAM, IoT, AI, ML, authentication, models, policies, healthcare

Procedia PDF Downloads 22
1251 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 140
1250 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 97
1249 Quantitative Phase Imaging System Based on a Three-Lens Common-Path Interferometer

Authors: Alexander Machikhin, Olga Polschikova, Vitold Pozhar, Alina Ramazanova

Abstract:

White-light quantitative phase imaging is an effective technique for achieving sub-nanometer phase sensitivity. Highly stable interferometers based on common-path geometry have been developed in recent years to solve this task. Some of these methods also apply multispectral approach. The purpose of this research is to suggest a simple and effective interferometer for such systems. We developed a three-lens common-path interferometer, which can be used for quantitative phase imaging with or without multispectral modality. The lens system consists of two components, the first one of which is a compound lens, consisting of two lenses. A pinhole is placed between the components. The lens-in-lens approach enables effective light transmission and high stability of the interferometer. The multispectrality is easily implemented by placing a tunable filter in front of the interferometer. In our work, we used an acousto-optical tunable filter. Some design considerations are discussed and multispectral quantitative phase retrieval is demonstrated.

Keywords: acousto-optical tunable filter, common-path interferometry, digital holography, multispectral quantitative phase imaging

Procedia PDF Downloads 311
1248 Authorship Profiling of Unidentified Corpora in Saudi Social Media

Authors: Abdulaziz Fageeh

Abstract:

In the bustling digital landscape of Saudi Arabia, a chilling wave of cybercrime has swept across the nation. Among the most nefarious acts are financial blackmail schemes, perpetrated by anonymous actors lurking within the shadows of social media platforms. This chilling reality necessitates the utilization of forensic linguistic techniques to unravel the identities of these virtual villains. This research delves into the complex world of authorship profiling, investigating the effectiveness of various linguistic features in identifying the perpetrators of malicious messages within the Saudi social media environment. By meticulously analyzing patterns of language, vocabulary choice, and stylistic nuances, the study endeavors to uncover the hidden characteristics of the individuals responsible for these heinous acts. Through this linguistic detective work, the research aims to provide valuable insights to investigators and policymakers in the ongoing battle against cybercrime and to shed light on the evolution of malicious online behavior within the Saudi context.

Keywords: authorship profiling, arabic linguistics, saudi social media, cybercrime, financial blackmail, linguistic features, forensic linguistics, online threats

Procedia PDF Downloads 12
1247 The Lived Experiences of Fathers with Children Who Have Cerebral Palsy: An Interpretative Phenomenological Analysis

Authors: Krizette Ladera

Abstract:

Fathers are there not only to provide the financial stability of a family but a father is also there to provide the love and support that usually people would see as the mother’s responsibility. To describe the lived experiences and how fathers make sense of their lived experiences with their children who have cerebral palsy is the main objective of the study. A qualitative research using a thematic analysis was used for the study. The qualitative research focused on the personal narratives, self-report and expression of the participant’s memory in terms of how they tell their stories. The interpretative phenomenological analysis was used to focus on the experience of the participants on how they will describe their experiences, and to also add on that the IPA will also attempt to describe and explain the meaning of human experiences using interview, specifically on the father who have a child that suffers from cerebral palsy. For the sampling technique, the snowball technique was used to gather participants from the referral of other participants. The five non-randomly selected fathers will be served as the participants for the research. A self-made interview with an open-ended question was used as the research instrument; it includes profiling of the respondent as well as their experiences in taking care of their child that suffers from cerebral palsy. In analyzing a data, the researcher used the thematic analysis where in the interview was made into a transcript, then it was organized and divided themes. After that, the relations of each themes, was identified and it was later documented and translated into written text format using thematic grouping. Finally, the researcher analyzed each data according to its themes and put it in a table to be presented in the result section of the study And as for the result of the study, the researcher was able to come up with the four (4) main themes that most of the participants experienced and those are: The experiences in finding out about the condition of the Child, disclosing the condition of the child to the family and its emotional effect, The experiences of living the day of day realities in providing the physical, financial, emotional and a well balanced environment to the child, and the religious perspectives of the fathers. Along with those four (4) themes comes the subtheme which explains the themes in a more detailed explanation.

Keywords: cerebral palsy, children, fathers, lived experiences

Procedia PDF Downloads 205
1246 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
1245 A Prototype of an Information and Communication Technology Based Intervention Tool for Children with Dyslexia

Authors: Rajlakshmi Guha, Sajjad Ansari, Shazia Nasreen, Hirak Banerjee, Jiaul Paik

Abstract:

Dyslexia is a neurocognitive disorder, affecting around fifteen percent of the Indian population. The symptoms include difficulty in reading alphabet, words, and sentences. This can be difficult at the phonemic or recognition level and may further affect lexical structures. Therapeutic intervention of dyslexic children post assessment is generally done by special educators and psychologists through one on one interaction. Considering the large number of children affected and the scarcity of experts, access to care is limited in India. Moreover, unavailability of resources and timely communication with caregivers add on to the problem of proper intervention. With the development of Educational Technology and its use in India, access to information and care has been improved in such a large and diverse country. In this context, this paper proposes an ICT enabled home-based intervention program for dyslexic children which would support the child, and provide an interactive interface between expert, parents, and students. The paper discusses the details of the database design and system layout of the program. Along with, it also highlights the development of different technical aids required to build out personalized android applications for the Indian dyslexic population. These technical aids include speech database creation for children, automatic speech recognition system, serious game development, and color coded fonts. The paper also emphasizes the games developed to assist the dyslexic child on cognitive training primarily for attention, working memory, and spatial reasoning. In addition, it talks about the specific elements of the interactive intervention tool that makes it effective for home based intervention of dyslexia.

Keywords: Android applications, cognitive training, dyslexia, intervention

Procedia PDF Downloads 291
1244 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems

Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs

Abstract:

The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.

Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation

Procedia PDF Downloads 60
1243 Regional Treatment Trends in Canada Derived from Pharmacy Records

Authors: John Chau, Tzvi Aviv

Abstract:

Cardiometabolic conditions (hypertension, diabetes, and hyperlipidemia) are major public health concerns. Analysis of all prescription records from about 10 million patients at the largest network of pharmacies in Canada reveals small year-over-year increases in the treatment prevalence of cardiometabolic diseases prior to the COVID-19 pandemic. Cardiometabolic treatment rates increase with age and are higher in males than females. Hypertension treatment rates were 24% in males and 19% in females in 2021. Diabetes treatment rates were 10% in males and 7% in females in 2021. Geospatial analysis using patient addresses reveals interesting differences among provinces and neighborhoods in Canada. Using digital surveys distributed among 8,504 Canadian adults, an increase in hypertension awareness with age and female gender was observed. However, 7% of seniors and 6% of middle-aged Canadians reported uncontrolled blood pressure (>140/90 mmHg). In addition, elevated blood pressure (130-139/80-89 mmHg) was reported by 20% of seniors and 14% of middle-aged Canadians.

Keywords: cardiometabolic conditions, diabetes, hypertension, precision public health

Procedia PDF Downloads 116
1242 Challenges for IoT Adoption in India: A Study Based on Foresight Analysis for 2025

Authors: Shruti Chopra, Vikas Rao Vadi

Abstract:

In the era of the digital world, the Internet of Things (IoT) has been receiving significant attention. Its ubiquitous connectivity between humans, machines to machines (M2M) and machines to humans provides it a potential to transform the society and establish an ecosystem to serve new dimensions to the economy of the country. Thereby, this study has attempted to identify the challenges that seem prevalent in IoT adoption in India through the literature survey. Further, the data has been collected by taking the opinions of experts to conduct the foresight analysis and it has been analyzed with the help of scenario planning process – Micmac, Mactor, Multipol, and Smic-Prob. As a methodology, the study has identified the relationship between variables through variable analysis using Micmac and actor analysis using Mactor, this paper has attempted to generate the entire field of possibilities in terms of hypotheses and construct various scenarios through Multipol. And lastly, the findings of the study include final scenarios that are selected using Smic-Prob by assigning the probability to all the scenarios (including the conditional probability). This study may help the practitioners and policymakers to remove the obstacles to successfully implement the IoT in India.

Keywords: Internet of Thing (IoT), foresight analysis, scenario planning, challenges, policymaking

Procedia PDF Downloads 147
1241 Expression of Somatostatin and Neuropeptide Y in Dorsal Root Ganglia Following Hind Paw Incision in Rats

Authors: Anshu Bahl, Saroj Kaler, Shivani Gupta, S B Ray

Abstract:

Background: Somatostatin is an endogenous regulatory neuropeptide. Somatostatin and its analogues play an important role in neuropathic and inflammatory pain. Neuropeptide Y is extensively distributed in the mammalian nervous system. NPY has an important role in blood pressure, circadian rhythm, obesity, appetite and memory. The purpose was to investigate somatostatin and NPY expression in dorsal root ganglia during pain. The plantar incision model in rats is similar to postoperative pain in humans. Methods: 24 adult male Sprague dawley rats were distributed randomly into two groups – Control (n=6) and incision (n=18) groups. Using Hargreaves apparatus, thermal hyperalgesia behavioural test for nociception was done under basal condition and after surgical incision in right hind paw at different time periods (day 1, 3 and 5). The plantar incision was performed as per standard protocol. Perfusion was done using 4% paraformaldehyde followed by extraction of dorsal root ganglia at L4 level. The tissue was processed for immunohistochemical localisation for somatostatin and neuropeptide Y. Results: Post incisional groups (day 1, 3 and 5) exhibited significant decrease of paw withdrawal latency as compared to control groups. Somatostatin expression was noted under basal conditions. It decreased on day 1, but again gradually increased on day 3 and further on day five post incision. The expression of Neuropeptide Y was noted in the cytoplasm of dorsal root ganglia under basal conditions. Compared to control group, expression of neuropeptide Y decreased on day one after incision, but again gradually increased on day 3. Maximum expression was noted on day five post incision. Conclusion: Decrease in paw withdrawal latency indicated nociception, particularly on day 1. In comparison to control, somatostatin and NPY expression was decreased on day one post incision. This could be correlated with increased axoplasmic flow towards the spinal cord. Somatostatin and NPY expression was maximum on day five post incision. This could be due to decreased migration from the site of synthesis towards the spinal cord.

Keywords: dorsal root ganglia, neuropeptide y, postoperative pain, somatostatin

Procedia PDF Downloads 176
1240 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 27
1239 Approach-Avoidance and Intrinsic-Extrinsic Motivation of Adolescent Computer Games Players

Authors: Monika Paleczna, Barbara Szmigielska

Abstract:

The period of adolescence is a time when young people are becoming more and more active and conscious users of the digital world. One of the most frequently undertaken activities by them is computer games. Young players can choose from a wide range of games, including action, adventure, strategy, and logic games. The main aim of this study is to answer the question about the motivation of teenage players. The basic question is what motivates young players to play computer games and what motivates them to play a particular game. Fifty adolescents aged 15-17 participated in the study. They completed a questionnaire in which they determined what motivates them to play, how often they play computer games, and what type of computer games they play most often. It was found that entertainment and learning English are among the most important motives. The most important specific features related to a given game are the knowledge of its previous parts and the ability to play for free. The motives chosen by the players will be described in relation to the concepts of internal and external as well as approach and avoidance motivation. An additional purpose of this study is to present data concerning preferences regarding the type of games and the amount of time they spend playing.

Keywords: computer games, motivation, game preferences, adolescence

Procedia PDF Downloads 184
1238 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison

Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo

Abstract:

A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.

Keywords: affective computing, interface, brain, intelligent interaction

Procedia PDF Downloads 389
1237 A Synopsis of Green Energy Technology Implementation In South Africa

Authors: Sifiso Vilakazi, Lerato Mzenzi

Abstract:

BACKGROUND :- Human mind is a double-edged sword, it is both arduous and obtuse, vague and explicit. The neuroscience of brain has baffled all and left none. In this labyrinth, a novel neurotransmitter has set its foot. D-Aspartic acid, which has been established in rats and animals’ brain as a neurochemical in controlling behaviour, aggression, fertility, cognition and memory is set to formulate a new benchmark as a marker among suicidal and accidental death victims. Without losing sight of the fact, we have endeavoured to dig out the biochemical relation behind suicide in our research. We in our research have exerted to decipher the puzzle among humans for D-Aspartic acid using HPLC. METHODS:- We have taken 30 samples each of pre-frontal cortex of brain from suicide and road traffic accidents victims for our case-control research to establish brain D-Aspartic acid level using HPLC as a marker for suicide. RESULTS:- By using Independent/Unpaired T-Test Analysis:- The two-tailed P value is less than 0.0044. MEAN (mMOL/mL/G) for D-Aspartic acid in control is 24.2737±7.5958 and for cases is 19.5540±4.2647. By conventional criteria, this difference is considered to be extremely statistically significant. CONCLUSION:- (1) Brain D-Aspartic acid has an effect in the act of suicide and its values show a large drop before the act of suicide is commenced as compared to road traffic accidents which correlates with the study where D-AA was studied as a novel endogenous neurotransmitter in case of mental health disorders in humans, though never studied on suicide victims, likely getting it reference from research occurring on rats where it was discovered that D-AA plays a role in cognition, personality development, thought process, aggression. (2)The other study which was related to humans and signified the role of D-AA in reproduction, where low D-AA leads to infertility and depression and hence providing the much needed proof of role of D-AA in mental health disorders and suicide, and subsequently to the act of suicide.

Keywords: green energy, policy, technology, implementation

Procedia PDF Downloads 6
1236 Cities Simulation and Representation in Locative Games from the Perspective of Cultural Studies

Authors: B. A. A. Paixão, J. V. B. Gomide

Abstract:

This work aims to analyze the locative structure used by the locative games of the company Niantic. To fulfill this objective, a literature review on the representation and simulation of cities was developed; interviews with Ingress players and playing Ingress. Relating these data, it was possible to deepen the relationship between the virtual and the real to create the simulation of cities and their cultural objects in locative games. Cities representation associates geo-location provided by the Global Positioning System (GPS), with augmented reality and digital image, and provides a new paradigm in the city interaction with its parts and real and virtual world elements, homeomorphic to real world. Bibliographic review of papers related to the representation and simulation study and their application in locative games was carried out and is presented in the present paper. The cities representation and simulation concepts in locative games, and how this setting enables the flow and immersion in urban space, are analyzed. Some examples of games are discussed for this new setting development, which is a mix of real and virtual world. Finally, it was proposed a Locative Structure for electronic games using the concepts of heterotrophic representations and isotropic representations conjoined with immediacy and hypermediacy.

Keywords: cities representation, cities simulation, games simulation, immersion, locative games

Procedia PDF Downloads 210
1235 The Applications of Wire Print in Composite Material Research and Fabrication Process

Authors: Hsu Yi-Chia, Hoy June-Hao

Abstract:

FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future.

Keywords: parametric software, wire print, robotic arms fabrication, composite filament additive manufacturing

Procedia PDF Downloads 130
1234 Systematic Review of Misconceptions: Tools for Diagnostics and Remediation Models for Misconceptions in Physics

Authors: Muhammad Iqbal, Edi Istiyono

Abstract:

Misconceptions are one of the problems in physics learning where students' understanding is not in line with scientific theory. The aim of this research is to find diagnostic tools to identify misconceptions and how to remediate physics misconceptions. In this research, the articles that will be reviewed come from the Scopus database related to physics misconceptions from 2013-2023. The articles obtained from the Scopus database were then selected according to the Prisma model, so 29 articles were obtained that focused on discussing physics misconceptions, especially regarding diagnostic tools and remediation methods. Currently, the most widely used diagnostic tool is the four-tier test, which is able to measure students' misconceptions in depth by knowing whether students are guessing or not and from then on, there is also a trend toward five-tier diagnostic tests with additional sources of information obtained. So that the origin of students' misconceptions is known. There are several ways to remediate student misconceptions, namely 11 ways and one of the methods used is digital practicum so that abstract things can be visualized into real ones. This research is limited to knowing what tools are used to diagnose and remediate misconceptions, so it is not yet known how big the effect of remediation methods is on misconceptions. The researcher recommends that in the future further research can be carried out to find out the most appropriate remediation method for remediating student misconceptions.

Keywords: misconception, remediation, systematic review, tools

Procedia PDF Downloads 36
1233 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 517
1232 The Role of E-Learning in Science, Technology, Engineering, and Math Education

Authors: Annette McArthur

Abstract:

The traditional model of teaching and learning, where ICT sits as a separate entity is not a model for a 21st century school. It is imperative that teaching and learning embraces technological advancements. The challenge in schools lies in shifting the mindset of teachers so they see ICT as integral to their teaching, learning and curriculum rather than a separate E-Learning curriculum stream. This research project investigates how the effective, planned, intentional integration of ICT into a STEM curriculum, can enable the shift in the teacher mindset. The project incorporated: • Developing a professional coaching relationship with key STEM teachers. • Facilitating staff professional development involving student centered project based learning pedagogy in the context of a STEM curriculum. • Facilitating staff professional development involving digital literacy. • Establishing a professional community where collaboration; sharing and reflection were part of the culture of the STEM community. • Facilitating classroom support for the effective delivery innovative STEM curriculum. • Developing STEM learning spaces where technologies were used to empower and engage learners to participate in student-centered, project-based learning.

Keywords: e-learning, ICT, project based learning, STEM

Procedia PDF Downloads 300
1231 Value in Exchange: The Importance of Users Interaction as the Center of User Experiences

Authors: Ramlan Jantan, Norfadilah Kamaruddin, Shahriman Zainal Abidin

Abstract:

In this era of technology, the co-creation method has become a new development trend. In this light, most design businesses have currently transformed their development strategy from being goods-dominant into service-dominant where more attention is given to the end-users and their roles in the development process. As a result, the conventional development process has been replaced with a more cooperative one. Consequently, numerous studies have been conducted to explore the extension of co-creation method in the design development process and most studies have focused on issues found during the production process. In the meantime, this study aims to investigate potential values established during the pre-production process, which is also known as the ‘circumstances value creation’. User involvement is questioned and crucially debate at the entry level of pre-production process in value in-exchange jointly spheres; thus user experiences took place. Thus, this paper proposed a potential framework of the co-creation method for Malaysian interactive product development. The framework is formulated from both parties involved: the users and designers. The framework will clearly give an explanation of the value of the co-creation method, and it could assist relevant design industries/companies in developing a blueprint for the design process. This paper further contributes to the literature on the co-creation of value and digital ecosystems.

Keywords: co-creation method, co-creation framework, co-creation, co-production

Procedia PDF Downloads 178
1230 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems

Procedia PDF Downloads 376
1229 A Discourse Study of Multimodal Intertextuality in Egyptian Social Media Memes

Authors: Ola Hafez

Abstract:

This study examines the way selected Egyptian digitally mediated memes utilize intertextuality as a means of expression. It is motivated by the emerging digital socio-political humorous practice using various forms of political commentary in Egyptian social media. One of these forms involves the use of memes incorporating (often doctored) video frames taken from Egyptian plays, films and songs, and relocated in a different socio-political context, often with a caption that re-appropriates the frame for the purpose of critical commentary, thus juxtaposing the socio-political phenomena being addressed and the Egyptian artistic and cultural heritage. The paper presents a discourse study of a convenience sample of a recent social media campaign and carries out two levels of analysis. At the micro level, the study pinpoints the various modes of intertextuality employed, including verbal as well as visual intertextuality in the light of the work of social semiotics by Kress and van Leeuwen. At the macro level, the paper sheds light on the socio-political implications of such practice in the light of Political Discourse Analysis.

Keywords: digitally mediated discourse, discourse analysis, Egyptian Arabic, intertextuality, memes, multimodality, political discourse analysis

Procedia PDF Downloads 217
1228 Motivation and Criteria as Determinant Factors in Accepting New Talents on User-Generated Content (UGC): Youtube as a Platform

Authors: Shereen Nadira Binti Jasney, Mohd Syuhaidi Bin Abu Bakar, Hafizah Binti Rosli

Abstract:

This quantitative study explored factors that motivate the public to use YouTube; and the elements of criteria, which the public are looking for to accept new talents on User-Generated Content (UGC). There are mass inputs on the net but the publics are still being very selective in accepting new talents. Thus, it is important to identify determinant factors that contribute to the acceptance of new talents on UGC. A total number of 236 respondents have participated in this study using Simple Random Sampling and they were analyzed with descriptive analysis. The findings of this paper advocate that tremendous expansion; and diversification YouTube music offers are main factors that motivated public viewers in using YouTube on accepting new talents. It is also found that by being relatable and concurrently providing interesting contents, having the artist name and song title in the YouTube talent’s title video and the number of views and likes of the video are some of the criteria that the public are looking for in accepting new talents on the UGC. This paper introduces YouTube as a mean of discovering new talents in the music industry where the public, especially the younger generations, whom are actively engaged with current digital landscape that they’ve been presently silver-plated.

Keywords: motivation, criteria, new talents, UGC, YouTube

Procedia PDF Downloads 287
1227 Robust Data Image Watermarking for Data Security

Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan

Abstract:

In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.

Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms

Procedia PDF Downloads 515
1226 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation

Procedia PDF Downloads 494
1225 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 196