Search results for: weather prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2968

Search results for: weather prediction

358 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 94
357 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen

Abstract:

Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: infectious disease, dengue, geospatial data, climate

Procedia PDF Downloads 383
356 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients

Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming

Abstract:

Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.

Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry

Procedia PDF Downloads 294
355 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 173
354 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 197
353 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity

Authors: Shivdayal Patel, Suhail Ahmad

Abstract:

Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.

Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling

Procedia PDF Downloads 279
352 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 89
351 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 156
350 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 139
349 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 77
348 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 6
347 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 482
346 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 136
345 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 93
344 Evaluation of the Effect of Milk Recording Intervals on the Accuracy of an Empirical Model Fitted to Dairy Sheep Lactations

Authors: L. Guevara, Glória L. S., Corea E. E, A. Ramírez-Zamora M., Salinas-Martinez J. A., Angeles-Hernandez J. C.

Abstract:

Mathematical models are useful for identifying the characteristics of sheep lactation curves to develop and implement improved strategies. However, the accuracy of these models is influenced by factors such as the recording regime, mainly the intervals between test day records (TDR). The current study aimed to evaluate the effect of different TDR intervals on the goodness of fit of the Wood model (WM) applied to dairy sheep lactations. A total of 4,494 weekly TDRs from 156 lactations of dairy crossbred sheep were analyzed. Three new databases were generated from the original weekly TDR data (7D), comprising intervals of 14(14D), 21(21D), and 28(28D) days. The parameters of WM were estimated using the “minpack.lm” package in the R software. The shape of the lactation curve (typical and atypical) was defined based on the WM parameters. The goodness of fit was evaluated using the mean square of prediction error (MSPE), Root of MSPE (RMSPE), Akaike´s Information Criterion (AIC), Bayesian´s Information Criterion (BIC), and the coefficient of correlation (r) between the actual and estimated total milk yield (TMY). WM showed an adequate estimate of TMY regardless of the TDR interval (P=0.21) and shape of the lactation curve (P=0.42). However, we found higher values of r for typical curves compared to atypical curves (0.9vs.0.74), with the highest values for the 28D interval (r=0.95). In the same way, we observed an overestimated peak yield (0.92vs.6.6 l) and underestimated time of peak yield (21.5vs.1.46) in atypical curves. The best values of RMSPE were observed for the 28D interval in both lactation curve shapes. The significant lowest values of AIC (P=0.001) and BIC (P=0.001) were shown by the 7D interval for typical and atypical curves. These results represent the first approach to define the adequate interval to record the regime of dairy sheep in Latin America and showed a better fitting for the Wood model using a 7D interval. However, it is possible to obtain good estimates of TMY using a 28D interval, which reduces the sampling frequency and would save additional costs to dairy sheep producers.

Keywords: gamma incomplete, ewes, shape curves, modeling

Procedia PDF Downloads 78
343 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 54
342 Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Hala Raslan, Noha Eltaweel, Hanaa Rasmi, Solaf Kamel, May Magdy, Sherif Ismail, Khalda Amr

Abstract:

Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes.

Keywords: MiRNAs, expression, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 79
341 Importance of Prostate Volume, Prostate Specific Antigen Density and Free/Total Prostate Specific Antigen Ratio for Prediction of Prostate Cancer

Authors: Aliseydi Bozkurt

Abstract:

Objectives: Benign prostatic hyperplasia (BPH) is the most common benign disease, and prostate cancer (PC) is malign disease of the prostate gland. Transrectal ultrasound-guided biopsy (TRUS-bx) is one of the most important diagnostic tools in PC diagnosis. Identifying men at increased risk for having a biopsy detectable prostate cancer should consider prostate specific antigen density (PSAD), f/t PSA Ratio, an estimate of prostate volume. Method: We retrospectively studied 269 patients who had a prostate specific antigen (PSA) score of 4 or who had suspected rectal examination at any PSA level and received TRUS-bx between January 2015 and June 2018 in our clinic. TRUS-bx was received by 12 experienced urologists with 12 quadrants. Prostate volume was calculated prior to biopsy together with TRUS. Patients were classified as malignant and benign at the end of pathology. Age, PSA value, prostate volume in transrectal ultrasonography, corpuscle biopsy, biopsy pathology result, the number of cancer core and Gleason score were evaluated in the study. The success rates of PV, PSAD, and f/tPSA were compared in all patients and those with PSA 2.5-10 ng/mL and 10.1-30 ng/mL tp foresee prostate cancer. Result: In the present study, in patients with PSA 2.5-10 ng/ml, PV cut-off value was 43,5 mL (n=42 < 43,5 mL and n=102 > 43,5 mL) while in those with PSA 10.1-30 ng/mL prostate volüme (PV) cut-off value was found 61,5 mL (n=31 < 61,5 mL and n=36 > 61,5 mL). Total PSA values in the group with PSA 2.5-10 ng/ml were found lower (6.0 ± 1.3 vs 6.7 ± 1.7) than that with PV < 43,5 mL, this value was nearly significant (p=0,043). In the group with PSA value 10.1-30 ng/mL, no significant difference was found (p=0,117) in terms of total PSA values between the group with PV < 61,5 mL and that with PV > 61,5 mL. In the group with PSA 2.5-10 ng/ml, in patients with PV < 43,5 mL, f/t PSA value was found significantly lower compared to the group with PV > 43,5 mL (0.21 ± 0.09 vs 0.26 ± 0.09 p < 0.001 ). Similarly, in the group with PSA value of 10.1-30 ng/mL, f/t PSA value was found significantly lower in patients with PV < 61,5 mL (0.16 ± 0.08 vs 0.23 ± 0.10 p=0,003). In the group with PSA 2.5-10 ng/ml, PSAD value in patients with PV < 43,5 mL was found significantly higher compared to those with PV > 43,5 mL (0.17 ± 0.06 vs 0.10 ± 0.03 p < 0.001). Similarly, in the group with PSA value 10.1-30 ng/mL PSAD value was found significantly higher in patients with PV < 61,5 mL (0.47 ± 0.23 vs 0.17 ± 0.08 p < 0.001 ). The biopsy results suggest that in the group with PSA 2.5-10 ng/ml, in 29 of the patients with PV < 43,5 mL (69%) cancer was detected while in 13 patients (31%) no cancer was detected. While in 19 patients with PV > 43,5 mL (18,6%) cancer was found, in 83 patients (81,4%) no cancer was detected (p < 0.001). In the group with PSA value 10.1-30 ng/mL, in 21 patients with PV < 61,5 mL (67.7%) cancer was observed while only in10 patients (32.3%) no cancer was seen. In 5 patients with PV > 61,5 mL (13.9%) cancer was found while in 31 patients (86.1%) no cancer was observed (p < 0.001). Conclusions: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider PSA, f/t PSA Ratio, an estimate of prostate volume. Prostate volume in PC was found lower.

Keywords: prostate cancer, prostate volume, prostate specific antigen, free/total PSA ratio

Procedia PDF Downloads 149
340 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri

Authors: Shishay Kidanu, Abdullah Alhaj

Abstract:

Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.

Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri

Procedia PDF Downloads 74
339 Advancing Agriculture through Technology: An Abstract of Research Findings

Authors: Eugene Aninagyei-Bonsu

Abstract:

Introduction: Agriculture has been a cornerstone of human civilization, ensuring food security and livelihoods for billions of people worldwide. In recent decades, rapid advancements in technology have revolutionized the agricultural sector, offering innovative solutions to enhance productivity, sustainability, and efficiency. This abstract summarizes key findings from a research study that explores the impacts of technology in modern agriculture and its implications for future food production systems. Methodologies: The research study employed a mixed-methods approach, combining quantitative data analysis with qualitative interviews and surveys to gain a comprehensive understanding of the role of technology in agriculture. Data was collected from various stakeholders, including farmers, agricultural technicians, and industry experts, to capture diverse perspectives on the adoption and utilization of agricultural technologies. The study also utilized case studies and literature reviews to contextualize the findings within the broader agricultural landscape. Major Findings: The research findings reveal that technology plays a pivotal role in transforming traditional farming practices and driving innovation in agriculture. Advanced technologies such as precision agriculture, drone technology, genetic engineering, and smart irrigation systems have significantly improved crop yields, reduced environmental impact, and optimized resource utilization. Farmers who have embraced these technologies have reported increased productivity, enhanced profitability, and improved resilience to environmental challenges. Furthermore, the study highlights the importance of accessible and affordable technology solutions for smallholder farmers in developing countries. Mobile applications, sensor technologies, and digital platforms have enabled small-scale farmers to access market information, weather forecasts, and agricultural best practices, empowering them to make informed decisions and improve their livelihoods. The research emphasizes the need for targeted policies and investments to bridge the digital divide and promote equitable technology adoption in agriculture. Conclusion: In conclusion, this research underscores the transformative potential of technology in agriculture and its critical role in advancing sustainable food production systems. The findings suggest that harnessing technology can address key challenges facing the agricultural sector, including climate change, resource scarcity, and food insecurity. By embracing innovation and leveraging technology, farmers can enhance their productivity, profitability, and resilience in a rapidly evolving global food system. Moving forward, policymakers, researchers, and industry stakeholders must collaborate to facilitate the adoption of appropriate technologies, support capacity building, and promote sustainable agricultural practices for a more resilient and food-secure future.

Keywords: technology development in modern agriculture, the influence of information technology access in agriculture, analyzing agricultural technology development, analyzing of the frontier technology of agriculture loT

Procedia PDF Downloads 35
338 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis

Authors: William Ho, Agus Wicaksana

Abstract:

Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.

Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review

Procedia PDF Downloads 74
337 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy

Authors: Jemal Ebrahim Dessie, Lukács Zsolt

Abstract:

High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.

Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper

Procedia PDF Downloads 100
336 Barriers to Business Model Innovation in the Agri-Food Industry

Authors: Pia Ulvenblad, Henrik Barth, Jennie Cederholm BjöRklund, Maya Hoveskog, Per-Ola Ulvenblad

Abstract:

The importance of business model innovation (BMI) is widely recognized. This is also valid for firms in the agri-food industry, closely connected to global challenges. Worldwide food production will have to increase 70% by 2050 and the United Nations’ sustainable development goals prioritize research and innovation on food security and sustainable agriculture. The firms of the agri-food industry have opportunities to increase their competitive advantage through BMI. However, the process of BMI is complex and the implementation of new business models is associated with high degree of risk and failure. Thus, managers from all industries and scholars need to better understand how to address this complexity. Therefore, the research presented in this paper (i) explores different categories of barriers in research literature on business models in the agri-food industry, and (ii) illustrates categories of barriers with empirical cases. This study is addressing the rather limited understanding on barriers for BMI in the agri-food industry, through a systematic literature review (SLR) of 570 peer-reviewed journal articles that contained a combination of ‘BM’ or ‘BMI’ with agriculture-related and food-related terms (e.g. ‘agri-food sector’) published in the period 1990-2014. The study classifies the barriers in several categories and illustrates the identified barriers with ten empirical cases. Findings from the literature review show that barriers are mainly identified as outcomes. It can be assumed that a perceived barrier to growth can often be initially exaggerated or underestimated before being challenged by appropriate measures or courses of action. What may be considered by the public mind to be a barrier could in reality be very different from an actual barrier that needs to be challenged. One way of addressing barriers to growth is to define barriers according to their origin (internal/external) and nature (tangible/intangible). The framework encompasses barriers related to the firm (internal addressing in-house conditions) or to the industrial or national levels (external addressing environmental conditions). Tangible barriers can include asset shortages in the area of equipment or facilities, while human resources deficiencies or negative willingness towards growth are examples of intangible barriers. Our findings are consistent with previous research on barriers for BMI that has identified human factors barriers (individuals’ attitudes, histories, etc.); contextual barriers related to company and industry settings; and more abstract barriers (government regulations, value chain position, and weather). However, human factor barriers – and opportunities - related to family-owned businesses with idealistic values and attitudes and owning the real estate where the business is situated, are more frequent in the agri-food industry than other industries. This paper contributes by generating a classification of the barriers for BMI as well as illustrating them with empirical cases. We argue that internal barriers such as human factors barriers; values and attitudes are crucial to overcome in order to develop BMI. However, they can be as hard to overcome as for example institutional barriers such as governments’ regulations. Implications for research and practice are to focus on cognitive barriers and to develop the BMI capability of the owners and managers of agri-industry firms.

Keywords: agri-food, barriers, business model, innovation

Procedia PDF Downloads 233
335 Study on the Prediction of Serviceability of Garments Based on the Seam Efficiency and Selection of the Right Seam to Ensure Better Serviceability of Garments

Authors: Md Azizul Islam

Abstract:

Seam is the line of joining two separate fabric layers for functional or aesthetic purposes. Different kinds of seams are used for assembling the different areas or parts of the garment to increase serviceability. To empirically support the importance of seam efficiency on serviceability of garments, this study is focused on choosing the right type of seams for particular sewing parts of the garments based on the seam efficiency to ensure better serviceability. Seam efficiency is the ratio of seam strength and fabric strength. Single jersey knitted finished fabrics of four different GSMs (gram per square meter) were used to make the test garments T-shirt. Three distinct types of the seam: superimposed, lapped and flat seam was applied to the side seams of T-shirt and sewn by lockstitch (stitch class- 301) in a flat-bed plain sewing machine (maximum sewing speed: 5000 rpm) to make (3x4) 12 T-shirts. For experimental purposes, needle thread count (50/3 Ne), bobbin thread count (50/2 Ne) and the stitch density (stitch per inch: 8-9), Needle size (16 in singer system), stitch length (31 cm), and seam allowance (2.5cm) were kept same for all specimens. The grab test (ASTM D5034-08) was done in the Universal tensile tester to measure the seam strength and fabric strength. The produced T-shirts were given to 12 soccer players who wore the shirts for 20 soccer matches (each match of 90 minutes duration). Serviceability of the shirt were measured by visual inspection of a 5 points scale based on the seam conditions. The study found that T-shirts produced with lapped seam show better serviceability and T-shirts made of flat seams perform the lowest score in serviceability score. From the calculated seam efficiency (seam strength/ fabric strength), it was obvious that the performance (in terms of strength) of the lapped and bound seam is higher than that of the superimposed seam and the performance of superimposed seam is far better than that of the flat seam. So it can be predicted that to get a garment of high serviceability, lapped seams could be used instead of superimposed or other types of the seam. In addition, less stressed garments can be assembled by others seems like superimposed seams or flat seams.

Keywords: seam, seam efficiency, serviceability, T-shirt

Procedia PDF Downloads 201
334 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 195
333 Sustainable Design Criteria for Beach Resorts to Enhance Physical Activity That Helps Improve Health and Well-being for Adults in Saudi Arabia

Authors: Noorh Albadi, Salha Khayyat

Abstract:

People's moods and well-being are affected by their environment. The built environment impacts one's level of activity and health. In order to enhance users' physical health, sustainable design strategies have been developed for the physical environment to improve users' health. This study aimed to determine whether adult resorts in Saudi Arabia meet standards that ensure physical wellness to identify the needed requirements. It will be significant to the Ministry of Tourism, Sports, developers, and designers. Physical activity affects human health physically and mentally. In Saudi Arabia, the percentage of people who practiced sports in the Kingdom in 2019 was 20.04% - males and females older than 15. On the other hand, there is a lack of physical activity in Saudi Arabia; 90% of the Kingdom's population spends more than two hours sitting down without moving, which puts them at risk of contracting a non-communicable disease. The lack of physical activity and movement led to an increase in the rate of obesity among Saudis by 59% in 2020 and consequently could cause chronic diseases or death. The literature generally endorses that leading an active lifestyle improves physical health and affects mental health. Therefore, the United Nations has set 17 sustainable development goals (SDGs) to ensure healthy lives and promote well-being for all ages. One of SDG3's targets is reducing mortality, which can be achieved by raising physical activity. In order to support sustainable design, many rating systems and strategies have been developed, such as WELL building, Leadership in Energy and Environmental Design, (LEED), Active design strategies, and RIPA plan of work. The survey was used to gather qualitative and quantitative information. It was designed based on the Active Design and WELL building theories targeting beach resorts visitors, professional and beginner athletes, and non-athletics to ask them about the beach resorts they visited in the Kingdom and whether they met the criteria of sports resorts and healthy and active design theories, in addition to gathering information about the preferences of physical activities in the Saudi society in terms of the type of activities that young people prefer, where they prefer to engage in and under any thermal and light conditions. The final section asks about the design of residential units in beach sports resorts, the data collected from 127 participants. Findings revealed that participants prefer outdoor activities in moderate weather and sunlight or the evening with moderate and sufficient lighting and that no beach sports resorts in the country are constructed to support sustainable design criteria for physical activity. Participants agreed that several measures that lessen tension at beach resorts and enhance movement and activity are needed by Saudi society. The study recommends designing resorts that meet the sustainable design criteria regarding physical activity in Saudi Arabia to increase physical activity to achieve psychological and physical benefits and avoid psychological and physical diseases related to physical inactivity.

Keywords: sustainable design, SDGs, active design strategies, well building, beach resort design

Procedia PDF Downloads 120
332 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 23
331 Prediction of Ionic Liquid Densities Using a Corresponding State Correlation

Authors: Khashayar Nasrifar

Abstract:

Ionic liquids (ILs) exhibit particular properties exemplified by extremely low vapor pressure and high thermal stability. The properties of ILs can be tailored by proper selection of cations and anions. As such, ILs are appealing as potential solvents to substitute traditional solvents with high vapor pressure. One of the IL properties required in chemical and process design is density. In developing corresponding state liquid density correlations, scaling hypothesis is often used. The hypothesis expresses the temperature dependence of saturated liquid densities near the vapor-liquid critical point as a function of reduced temperature. Extending the temperature dependence, several successful correlations were developed to accurately correlate the densities of normal liquids from the triple point to a critical point. Applying mixing rules, the liquid density correlations are extended to liquid mixtures as well. ILs are not molecular liquids, and they are not classified among normal liquids either. Also, ILs are often used where the condition is far from equilibrium. Nevertheless, in calculating the properties of ILs, the use of corresponding state correlations would be useful if no experimental data were available. With well-known generalized saturated liquid density correlations, the accuracy in predicting the density of ILs is not that good. An average error of 4-5% should be expected. In this work, a data bank was compiled. A simplified and concise corresponding state saturated liquid density correlation is proposed by phenomena-logically modifying reduced temperature using the temperature-dependence for an interacting parameter of the Soave-Redlich-Kwong equation of state. This modification improves the temperature dependence of the developed correlation. Parametrization was next performed to optimize the three global parameters of the correlation. The correlation was then applied to the ILs in our data bank with satisfactory predictions. The correlation of IL density applied at 0.1 MPa and was tested with an average uncertainty of around 2%. No adjustable parameter was used. The critical temperature, critical volume, and acentric factor were all required. Methods to extend the predictions to higher pressures (200 MPa) were also devised. Compared to other methods, this correlation was found more accurate. This work also presents the chronological order of developing such correlations dealing with ILs. The pros and cons are also expressed.

Keywords: correlation, corresponding state principle, ionic liquid, density

Procedia PDF Downloads 126
330 Sibling Relationship of Adults with Intellectual Disability in China

Authors: Luyin Liang

Abstract:

Although sibling relationship has been viewed as one of the most important family relationships that significantly impacted on the quality of life of both adults with Intellectual Disability (AWID) and their brothers/sisters, very few research have been done to investigate this relationship in China. This study investigated Chinese siblings of AWID’s relational motivations in sibling relationship and their determining factors. Quantitative research method has been adopted and 284 samples were recruited in this study. Siblings of AWID’s two types of relational motivations, including obligatory motivations and discretionary motivations were examined. Their emotional closeness, senses of responsibility, experiences of ID stigma, and expectancy of self-reward in sibling relationship were measured by validated scales. Personal, and familial-social demographic characteristics were also investigated. Linear correlation test and standard multiple regression analysis were the major statistical methods that have been used to analyze the data. The findings of this study showed that all the measured factors, including siblings of AWID’s emotional closeness, their senses of responsibility, experiences of ID stigma, and self-reward expectations had significant relationships with their both types of motivations. However, when these factors were grouped together to measure each type of these motivations, the prediction results were varied. The order of factors that best predict siblings of AWID’s obligatory motivations was: their senses of responsibility, emotional closeness, experiences of ID stigma, and their expectancy of self-reward, whereas the order of these factors that best determine siblings of AWID’s discretionary motivations was: their self-reward expectations, experiences of ID stigma, senses of responsibility, and emotional closeness. Among different demographic characteristics, AWID’s disability condition, their siblings’ age, gender, marital status, number of children, both siblings’ living arrangements and family financial status were found to have significant impacts on siblings of AWID’s both types of motivations in sibling relationship. The results of this study could enhance social work practitioners’ understandings about the needs and challenges of siblings of AWID. Suggestions on advocacies for policy changes and services improvements for these siblings were discussed in this study.

Keywords: sibling relationship, intellectual disability, adults, China

Procedia PDF Downloads 409
329 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 204