Search results for: conversion equation
587 Enhancement of Morphogenetic Potential to Obtain Elite Varities of Sauropus androgynous (L.) Merr. through Somatic Embryogenesis
Authors: S. Padma, D. H. Tejavathi
Abstract:
Somatic embryogenesis is a remarkable illustration of the dictum of plant totipotency where developmental reconstruction of somatic cells takes place towards the embryogenic pathway. It recapitulates the morphological and developmental process that occurs in zygotic embryogenesis. S. androgynous commonly called as multivitamin plant. The leaves are consumed as green leafy vegetable by the Southeast Asian communities due to their rich nutritional profile. Despite being a good nutritional vegetable with proteins, vitamins, minerals, amino acids, it is warned for excessive intake due to the presence of alkoloid called papaverine. Papaverine at higher concentrations is toxic and leads to a syndrome called Bronchiolitis Obliterans. In the present study, morphogenetic potential of shoot tip, leaf and nodal explants of Sauropus androgynous was investigated to develop and enhance the reliable plant regeneration protocol via somatic embryogenesis. Somatic embryos were derived directly from the embryogenic callus derived from shoot tip, node and leaf cultures on Phillips and Collins (L2) medium supplemented with NAA at various concentrations ranging from 5.3 µM/l to 26.85 µM/l within two months of inoculation. Thus obtained embryos were sub cultured to modified L2 media supplemented with increased vitamin level for the further growth. Somatic embryos with well-developed cotyledons were transferred to normal and modified L2 basal medium for conversion. The plantlets thus obtained were subjected to brief acclimatization before transferring them to land. About 95% of survival rate was recorded. The augmentation process of culturing various explants through somatic embryogenesis using synthetic medium with various plant growth regulators under controlled conditions have aggrandized the commercial production of Sauropus making it easily available over the conventional propagation methods. In addition, regeneration process through somatic embryogenesis has ameliorated the development of desired character in Sauropus with low papaverine content thereby providing a valuable resource to the food and pharmaceutical industry. Based on this research, plant tissue culture techniques have shown promise for economical and convenient application in Sauropus androgynous breeding.Keywords: L2 medium, multivitamin plant, NAA, papaverine
Procedia PDF Downloads 207586 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method
Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa
Abstract:
Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al
Procedia PDF Downloads 334585 Quantitative Seismic Interpretation in the LP3D Concession, Central of the Sirte Basin, Libya
Authors: Tawfig Alghbaili
Abstract:
LP3D Field is located near the center of the Sirt Basin in the Marada Trough approximately 215 km south Marsa Al Braga City. The Marada Trough is bounded on the west by a major fault, which forms the edge of the Beda Platform, while on the east, a bounding fault marks the edge of the Zelten Platform. The main reservoir in the LP3D Field is Upper Paleocene Beda Formation. The Beda Formation is mainly limestone interbedded with shale. The reservoir average thickness is 117.5 feet. To develop a better understanding of the characterization and distribution of the Beda reservoir, quantitative seismic data interpretation has been done, and also, well logs data were analyzed. Six reflectors corresponding to the tops of the Beda, Hagfa Shale, Gir, Kheir Shale, Khalifa Shale, and Zelten Formations were picked and mapped. Special work was done on fault interpretation part because of the complexities of the faults at the structure area. Different attribute analyses were done to build up more understanding of structures lateral extension and to view a clear image of the fault blocks. Time to depth conversion was computed using velocity modeling generated from check shot and sonic data. The simplified stratigraphic cross-section was drawn through the wells A1, A2, A3, and A4-LP3D. The distribution and the thickness variations of the Beda reservoir along the study area had been demonstrating. Petrophysical analysis of wireline logging also was done and Cross plots of some petrophysical parameters are generated to evaluate the lithology of reservoir interval. Structure and Stratigraphic Framework was designed and run to generate different model like faults, facies, and petrophysical models and calculate the reservoir volumetric. This study concluded that the depth structure map of the Beda formation shows the main structure in the area of study, which is north to south faulted anticline. Based on the Beda reservoir models, volumetric for the base case has been calculated and it has STOIIP of 41MMSTB and Recoverable oil of 10MMSTB. Seismic attributes confirm the structure trend and build a better understanding of the fault system in the area.Keywords: LP3D Field, Beda Formation, reservoir models, Seismic attributes
Procedia PDF Downloads 214584 Research of Seepage Field and Slope Stability Considering Heterogeneous Characteristics of Waste Piles: A Less Costly Way to Reduce High Leachate Levels and Avoid Accidents
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Due to the characteristics of high-heap and large-volume, the complex layers of waste and the high-water level of leachate, environmental pollution, and slope instability are easily produced. It is therefore of great significance to research the heterogeneous seepage field and stability of landfills. This paper focuses on the heterogeneous characteristics of the landfill piles and analyzes the seepage field and slope stability of the landfill using statistical and numerical analysis methods. The calculated results are compared with the field measurement and literature research data to verify the reliability of the model, which may provide the basis for the design, safe, and eco-friendly operation of the landfill. The main innovations are as follows: (1) The saturated-unsaturated seepage equation of heterogeneous soil is derived theoretically. The heterogeneous landfill is regarded as composed of infinite layers of homogeneous waste, and a method for establishing the heterogeneous seepage model is proposed. Then the formation law of the stagnant water level of heterogeneous landfills is studied. It is found that the maximum stagnant water level of landfills is higher when considering the heterogeneous seepage characteristics, which harms the stability of landfills. (2) Considering the heterogeneity weight and strength characteristics of waste, a method of establishing a heterogeneous stability model is proposed, and it is extended to the three-dimensional stability study. It is found that the distribution of heterogeneous characteristics has a great influence on the stability of landfill slope. During the operation and management of the landfill, the reservoir bank should also be considered while considering the capacity of the landfill.Keywords: heterogeneous characteristics, leachate levels, saturated-unsaturated seepage, seepage field, slope stability
Procedia PDF Downloads 251583 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement
Authors: Yohannes Bisa Biramo
Abstract:
This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers
Procedia PDF Downloads 83582 Spectroscopic Study of Tb³⁺ Doped Calcium Aluminozincate Phosphor for Display and Solid-State Lighting Applications
Authors: Sumandeep Kaur, Allam Srinivasa Rao, Mula Jayasimhadri
Abstract:
In recent years, rare earth (RE) ions doped inorganic luminescent materials are seeking great attention due to their excellent physical and chemical properties. These materials offer high thermal and chemical stability and exhibit good luminescence properties due to the presence of RE ions. The luminescent properties of these materials are attributed to their intra-configurational f-f transitions in RE ions. A series of Tb³⁺ doped calcium aluminozincate has been synthesized via sol-gel method. The structural and morphological studies have been carried out by recording X-ray diffraction patterns and SEM image. The luminescent spectra have been recorded for a comprehensive study of their luminescence properties. The XRD profile reveals the single-phase orthorhombic crystal structure with an average crystallite size of 65 nm as calculated by using DebyeScherrer equation. The SEM image exhibits completely random, irregular morphology of micron size particles of the prepared samples. The optimization of luminescence has been carried out by varying the dopant Tb³⁺ concentration within the range from 0.5 to 2.0 mol%. The as-synthesized phosphors exhibit intense emission at 544 nm pumped at 478 nm excitation wavelength. The optimized Tb³⁺ concentration has been found to be 1.0 mol% in the present host lattice. The decay curves show bi-exponential fitting for the as-synthesized phosphor. The colorimetric studies show green emission with CIE coordinates (0.334, 0.647) lying in green region for the optimized Tb³⁺ concentration. This report reveals the potential utility of Tb³⁺ doped calcium aluminozincate phosphors for display and solid-state lighting devices.Keywords: concentration quenching, phosphor, photoluminescence, XRD
Procedia PDF Downloads 154581 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities
Authors: Pedro Esteban
Abstract:
Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities
Procedia PDF Downloads 112580 Study of Efficiency of Flying Animal Using Computational Simulation
Authors: Ratih Julistina, M. Agoes Moelyadi
Abstract:
Innovation in aviation technology evolved rapidly by time to time for acquiring the most favorable value of utilization and is usually denoted by efficiency parameter. Nature always become part of inspiration, and for this sector, many researchers focused on studying the behavior of flying animal to comprehend the fundamental, one of them is birds. Experimental testing has already conducted by several researches to seek and calculate the efficiency by putting the object in wind tunnel. Hence, computational simulation is needed to conform the result and give more visualization which is based on Reynold Averaged Navier-Stokes equation solution for unsteady case in time-dependent viscous flow. By creating model from simplification of the real bird as a rigid body, those are Hawk which has low aspect ratio and Swift with high aspect ratio, subsequently generating the multi grid structured mesh to capture and calculate the aerodynamic behavior and characteristics. Mimicking the motion of downstroke and upstroke of bird flight which produced both lift and thrust, the sinusoidal function is used. Simulation is carried out for varied of flapping frequencies within upper and lower range of actual each bird’s frequency which are 1 Hz, 2.87 Hz, 5 Hz for Hawk and 5 Hz, 8.9 Hz, 13 Hz for Swift to investigate the dependency of frequency effecting the efficiency of aerodynamic characteristics production. Also, by comparing the result in different condition flights with the morphology of each bird. Simulation has shown that higher flapping frequency is used then greater aerodynamic coefficient is obtained, on other hand, efficiency on thrust production is not the same. The result is analyzed from velocity and pressure contours, mesh movement as to see the behavior.Keywords: characteristics of aerodynamic, efficiency, flapping frequency, flapping wing, unsteady simulation
Procedia PDF Downloads 245579 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid
Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis
Abstract:
This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener
Procedia PDF Downloads 78578 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System
Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.
Abstract:
Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention
Procedia PDF Downloads 73577 Effect of Dietary Fortification with Hibiscus Sabdariffa Calyces Meal on Egg Production and Egg Qualiy of Japanese Quail
Authors: Nomagugu Ndlovu, Kennedy H. Erlwanger, Eliton Chivandi
Abstract:
In order to enhance egg production and egg quality from layer poultry, producers use synthetic feed additives that enhance nutrient digestion and absorption in the gut. Synthetic feed additives have negative effects on consumer health hence the need to replace them with natural alternatives which are deemed safer for consumer health. Hibiscus sabdariffa calyces meal has hypolipidemic, probiotic and antioxidant activities; hence we investigated the effect of fortifying Japanese quail pullet diets with its calyces meal on egg production and egg quality. A standard Japanese quail layer diet was supplemented with H. sabdariffa calyces meal at 0%, 5% and 10% in diets 1, 2 and 3, respectively. Ninety, 5-week old Japanese quail hens were randomly allocated to and fed the layer diets for 56 days. Body mass, feed intake and egg mass, width, length, shell mass and thickness, yolk mass, height and diameter, albumen mass, length, width and height, and the proximate content and fatty acid profile of the egg albumen and yolk were determined. Supplemental fortification of the Japanese quail layer diet with H. sabdariffa calyces meal had no effect on growth performance and feed intake and conversion rate of the quail (P>0.05). The meal delayed the onset of laying and reduced (P < 0.0001) the number of eggs laid. It did not affect the external and internal egg quality parameters of Japanese quail (P > 0.05). Dietary fortification with H. sabdariffa calyces meal at 10% significantly increased the dry matter and reduced the fat content of the yolk and albumin of Japanese quail eggs (P < 0.05). Dietary H. sabdariffa calyces meal reduced the total omega 3 fatty acids in the yolk and significantly increased arachidonic acid (P = 0.0019), an omega 6 fatty acid. Inclusion of Hibiscus sabdariffa meal depressed egg production, suppressed omega 3 fatty acids and increased arachidonic acid thus, using it as a dietary supplement may result in losses to producers of Japanese quail eggs and may result in eggs whose fatty acid profile can compromise consumer health.Keywords: quail, eggs, hibiscus sabdariffa, quality
Procedia PDF Downloads 66576 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 80575 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant
Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen
Abstract:
Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.Keywords: PAH, PSR, energy recovery, ferro alloy furnace
Procedia PDF Downloads 273574 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions
Authors: Shivam Patel, Abdullah Y. Usmani
Abstract:
Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid
Procedia PDF Downloads 234573 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature
Procedia PDF Downloads 129572 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI
Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil
Abstract:
The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency
Procedia PDF Downloads 409571 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 129570 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction
Authors: Renzhi Qi, Zhaoping Zhong
Abstract:
Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction
Procedia PDF Downloads 82569 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys
Authors: Gulcan Ozerim, Gunay Anlas
Abstract:
In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.Keywords: crack, HRR singularity, shape memory alloys, stress distribution
Procedia PDF Downloads 325568 Structural Model on Organizational Climate, Leadership Behavior and Organizational Commitment: Work Engagement of Private Secondary School Teachers in Davao City
Authors: Genevaive Melendres
Abstract:
School administrators face the reality of teachers losing their engagement, or schools losing the teachers. This study is then conducted to identify a structural model that best predict work engagement of private secondary teachers in Davao City. Ninety-three teachers from four sectarian schools and 56 teachers from four non-sectarian schools were involved in the completion of four survey instruments namely Organizational Climate Questionnaire, Leader Behavior Descriptive Questionnaire, Organizational Commitment Scales, and Utrecht Work Engagement Scales. Data were analyzed using frequency distribution, mean, standardized deviation, t-test for independent sample, Pearson r, stepwise multiple regression analysis, and structural equation modeling. Results show that schools have high level of organizational climate dimensions; leaders oftentimes show work-oriented and people-oriented behavior; teachers have high normative commitment and they are very often engaged at their work. Teachers from non-sectarian schools have higher organizational commitment than those from sectarian schools. Organizational climate and leadership behavior are positively related to and predict work engagement whereas commitment did not show any relationship. This study underscores the relative effects of three variables on the work engagement of teachers. After testing network of relationships and evaluating several models, a best-fitting model was found between leadership behavior and work engagement. The noteworthy findings suggest that principals pay attention and consistently evaluate their behavior for this best predicts the work engagement of the teachers. The study provides value to administrators who take decisions and create conditions in which teachers derive fulfillment.Keywords: leadership behavior, organizational climate, organizational commitment, private secondary school teachers, structural model on work engagement
Procedia PDF Downloads 272567 The Richtmyer-Meshkov Instability Impacted by the Interface with Different Components Distribution
Authors: Sheng-Bo Zhang, Huan-Hao Zhang, Zhi-Hua Chen, Chun Zheng
Abstract:
In this paper, the Richtmyer-Meshkov instability has been studied numerically by using the high-resolution Roe scheme based on the two-dimensional unsteady Euler equation, which was caused by the interaction between shock wave and the helium circular light gas cylinder with different component distributions. The numerical results further discuss the deformation process of the gas cylinder, the wave structure of the flow field and quantitatively analyze the characteristic dimensions (length, height, and central axial width) of the gas cylinder, the volume compression ratio of the cylinder over time. In addition, the flow mechanism of shock-driven interface gas mixing is analyzed from multiple perspectives by combining it with the flow field pressure, velocity, circulation, and gas mixing rate. Then the effects of different initial component distribution conditions on interface instability are investigated. The results show when the diffusion interface transit to the sharp interface, the reflection coefficient gradually increases on both sides of the interface. When the incident shock wave interacts with the cylinder, the transmission of the shock wave will transit from conventional transmission to unconventional transmission. At the same time, the reflected shock wave is gradually strengthened, and the transmitted shock wave is gradually weakened, which leads to an increase in the Richtmyer-Meshkov instability. Moreover, the Atwood number on both sides of the interface also increases as the diffusion interface transit to the sharp interface, which leads to an increase in the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability. Therefore, the increase in instability will lead to an increase the circulation, resulting in an increase in the growth rate of gas mixing rate.Keywords: shock wave, He light cylinder, Richtmyer-Meshkov instability, Gaussian distribution
Procedia PDF Downloads 77566 Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion
Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin
Abstract:
Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR.Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis
Procedia PDF Downloads 182565 Entrepreneurial Orientation and Innovation Outcomes in Ghanaian Social Enterprises: Interaction Effect of Organizational Unlearning
Authors: Stephen Oduro
Abstract:
With a quantitative research design, this study seeks to analyze how, an intangible resource, Organisational Unlearning shapes the relationship between Entrepreneurial Orientation (EO) and Innovation Outcomes among social entrepreneurship organizations in Ghana. The Resource-Based View (RBV) of the firm and EO-Performance Contingency framework was adopted as the underpinning theories of the study. Entrepreneurial Orientation dimensions, namely Innovativeness, Autonomy, Risk-Taking, Proactiveness, and Competitive aggressiveness were examined to determine its significant, direct influence on the Innovation Outcomes of the social enterprises in Ghana. Organizational Unlearning dimensions, specifically examination of lens fitting, the consolidation of emergent understandings, and framework for changing individual habits were explored to determine whether they strengthen or weaken the direct nexus between Entrepreneurial Orientation dimensions and Innovation Outcomes. A self-administered questionnaire was administered to 556 targeted social enterprises across Africa through online questionnaire platform and the data generated and proposed hypotheses were analyzed and tested using Structural Equation Model-Partial Least Square (SEM-PLS 3) statistical tool. The findings revealed that EO dimensions, specifically proactiveness, autonomy, innovativeness, and risk-taking are positively related to IO, but we found no significant support for competitive aggressiveness. The findings, moreover, divulged that the positive, direct relationship between EO and IO is highly strengthened by OU. It is concluded that OU fully moderates the direct link between EO and IO. The present study contributes to the our understanding of the interrelationship among Entrepreneurial Orientation, Organizational Unlearning, and Innovation Outcomes in the social entrepreneurship context.Keywords: entrepreneurial orientation, innovation outcomes, organizational unlearning, RBV, SEM-PLS, social enterprise, Africa
Procedia PDF Downloads 140564 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process
Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre
Abstract:
The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.Keywords: building materials, ettringite, meta-ettringite, thermal energy storage
Procedia PDF Downloads 214563 Sustainable Valorization of Wine Production Waste: Unlocking the Potential of Grape Pomace and Lees in the Vinho Verde Region
Authors: Zlatina Genisheva, Pedro Ferreira-Santos, Margarida Soares, Cândida Vilarinho, Joana Carvalho
Abstract:
The wine industry produces significant quantities of waste, much of which remains underutilized as a potential raw material. Typically, this waste is either discarded in the fields or incinerated, leading to environmental concerns. By-products of wine production, like lees and grape pomace, are readily available at relatively low costs and hold promise as raw materials for biochemical conversion into valuable products. Reusing these waste materials is crucial, not only for reducing environmental impact but also for enhancing profitability. The Vinhos Verdes demarcated region, the largest wine-producing area in Portugal, has remained relatively stagnant over time. This project aims to offer an alternative income source for producers in the region while also expanding the limited existing research on this area. The main objective of this project is the study of the sustainable valorization of grape pomace and lees from the production of DOC Vinho Verde. Extraction tests were performed to obtain high-value compounds, targeting phenolic compounds from grape pomace and protein-rich extracts from lees. An environmentally friendly technique, microwave extraction, was used for this process. This method is not only efficient but also aligns with the principles of green chemistry, reducing the use of harmful solvents and minimizing energy consumption. The findings from this study have the potential to open new revenue streams for the region’s wine producers while promoting environmental sustainability. The optimal conditions for extracting proteins from lees involve the use of NaOH at 150ºC. Regardless of the solvent employed, the ideal temperature for obtaining extracts rich in polyphenol compounds and exhibiting strong antioxidant activity is also 150ºC. For grape pomace, extracts with a high concentration of polyphenols and significant antioxidant properties were obtained at 210ºC. However, the highest total tannin concentrations were achieved at 150ºC, while the maximum total flavonoid content was obtained at 170ºC.Keywords: antioxidants, circular economy, polyphenol compounds, waste valorization
Procedia PDF Downloads 18562 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis
Authors: Asowata Osamede
Abstract:
Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.Keywords: power-conversion, meteonorm, PV panels, DC-DC converters
Procedia PDF Downloads 147561 Research on Community-Based Engineering Learning and Undergraduate Students’ Creativity in China: The Moderate Effect of Engineering Identity
Authors: Liang Wang, Wei Zhang
Abstract:
There have been some existing researches on design-based engineering learning (DBEL) and project-based or problem-based engineering learning (PBEL). Those findings have greatly promoted the reform of engineering education in China. However, the engineering with a big E means that more and more engineering activities are designed and operated by communities of practice (CoPs), namely community-based engineering learning. However, whether community-based engineering learning can promote students' innovation has not been verified in published articles. This study fills this gap by investigating the relationship between community-based learning approach and students’ creativity, using engineering identity as an intermediary variable. The goal of this study is to discover the core features of community-based engineering learning, and make the features more beneficial for students’ creativity. The study created and adapted open survey items from previously published studies and a scale on learning community, students’ creativity and engineering identity. Firstly, qualitative content analysis methods by MAXQDA were used to analyze 32 open-ended questionnaires. Then the authors collected data (n=322) from undergraduate students in engineering competition teams and engineering laboratories in Zhejiang University, and structural equation modelling (SEM) was used to understand the relationship between different factors. The study finds: (a) community-based engineering learning has four main elements like real-task context, self-inquiry learning, deeply-consulted cooperation and circularly-iterated design, (b) community-based engineering learning can significantly enhance the engineering undergraduate students’ creativity, and (c) engineering identity partially moderated the relationship between community-based engineering learning and undergraduate students' creativity. The findings further illustrate the value of community-based engineering learning for undergraduate students. In the future research, the authors should further clarify the core mechanism of community-based engineering learning, and pay attention to the cultivation of undergraduate students’ engineer identity in learning community.Keywords: community-based engineering learning, students' creativity, engineering identity, moderate effect
Procedia PDF Downloads 145560 Institutional Levels Entrepreneurial Orientations and Social Entrepreneurial Intentions: Understanding the Mediating Role of Empathy
Authors: Paulson Young Ofenimu Okhawere
Abstract:
Research suggests that the main trait differentiating social entrepreneurs from traditional entrepreneurs is empathy. And although prior research has established the relevance of empathy in predicting social entrepreneurial intentions in different contexts, its usefulness at predicting social entrepreneurial intentions in emerging economy like Nigeria is yet to be well established. Whereas, it is well known that students in tertiary institutions in Nigeria (e.g. Universities, Polytechnics, and Colleges of Education) are given entrepreneurial orientations by being made to offer compulsory courses in entrepreneurship, research focusing on the effect of such students’ entrepreneurial orientation on entrepreneurial intentions is scant. To address this gap in the entrepreneurship literature, this study attempts to enhance our understanding by focusing on students selected from one University of Technology, one Polytechnic, and one College of Education in Niger State of Nigeria. The purpose of this study, therefore, is to examine the mechanism through which students’ institutional level entrepreneurial orientations affect their social entrepreneurial intentions and the role empathy plays in this relationship. Building on complexity theory (Satish & Streufert, 2003, 2001), this study proposes empathy as a proximal antecedent of social entrepreneurial intentions and that it is the mechanism through which the students’ entrepreneurial orientations affect their social entrepreneurial intentions. Data collected from 598 respondents were analyzed using multilevel structural equation modelling with Mplus version 7.3. The findings reveal that (i) although students’ entrepreneurial orientation directly relates to their social entrepreneurial intentions, this relationship differs according to the kind of institution; and (ii) students’ entrepreneurial orientations positively relates to social entrepreneurial intentions indirectly through empathy. Finally, the paper discusses the theoretical and practical implications of the findings, highlights the study’s strengths and limitations, and then maps out some directions for future research.Keywords: institutional level, entrepreneurial orientation, empathy, social entrepreneurial intentions
Procedia PDF Downloads 152559 Failing Regeneration, Displacement, and Continued Consequences on Future Urban Planning Processes in Distressed Neighborhoods in Tehran
Authors: Razieh Rezabeigi Sani, Alireza Farahani, Mahdi Haghi
Abstract:
Displacement, local discontent, and forced exclusion have become prominent parts of urban regeneration activities in the Global North and South. This paper discusses the processes of massive displacement and neighborhood alteration as the consequences of a large-scale political/ideological placemaking project in central Tehran that transformed people's daily lives in surrounding neighborhoods. The conversion of Imam Hussein Square and connecting 17-Shahrivar Street to a pedestrian plaza in 2016 resulted in adjacent neighborhoods' physical, social, and economic degradation. The project has downgraded the economic and social characteristics of urban life in surrounding neighborhoods, commercialized residential land uses, displaced local people and businesses, and created unprecedented housing modes. This research has been conducted in two stages; first, after the project's implementation between 2017-2018, and second, when the street was reopened after local protests in 2021. In the first phase, 50+ on-site interviews were organized with planners, managers, and dwellers about the decision-making processes, design, and project implementation. We find that the project was based on the immediate political objectives and top-down power exertion of the local government in creating exclusive spaces (for religious ceremonies) without considering locals' knowledge, preferences, lifestyles, and everyday interactions. In the continued research in 2021, we utilized data gathered in facilitation activities and several meetings and interviews with local inhabitants and businesses to explore, design, and implement initiatives for bottom-up planning in these neighborhoods. The top-down and product-oriented (rather than process-oriented) planning, dependency on municipal financing rather than local partnerships, and lack of public participation proved to have continued effects on local participation. The paper concludes that urban regeneration projects must be based on the participation of different private/public actors, sustainable financial resources, and overall social and spatial analysis of the peripheral area before interventions.Keywords: displacement, urban regeneration, distressed neighborhoods, ideological placemaking, Tehran
Procedia PDF Downloads 100558 Human Resource Information System: Role in HRM Practices and Organizational Performance
Authors: Ejaz Ali M. Phil
Abstract:
Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.Keywords: enterprise resource planning, human resource, information system, human capital
Procedia PDF Downloads 396