Search results for: waves power
4323 The Mitigation Strategy Analysis of Kuosheng Nuclear Power Plant Spent Fuel Pool Using MELCOR2.1/SNAP
Authors: Y. Chiang, J. R. Wang, J. H. Yang, Y. S. Tseng, C. Shih, S. W. Chen
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of Spent Fuel Pools (SFPs) in Taiwan after Fukushima event. In order to estimate the safety of Kuosheng NPP SFP, by using MELCOR2.1 and SNAP, the safety analysis of Kuosheng NPP SFP was performed combined with the mitigation strategy of NEI 06-12 report. There were several steps in this research. First, the Kuosheng NPP SFP models were established by MELCOR2.1/SNAP. Second, the Station Blackout (SBO) analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition. The results showed that the calculations of MELCOR and TRACE were very similar in this case. Second, the mitigation strategy analysis was done with the MELCOR model by following the NEI 06-12 report. The results showed the effectiveness of NEI 06-12 strategy in Kuosheng NPP SFP. Finally, a sensitivity study of SFP quenching was done to check the differences of different water injection time and the phenomena during the quenching. The results showed that if the cladding temperature was over 1600 K, the water injection may have chance to cause the accident more severe with more hydrogen generation. It was because of the oxidation heat and the “Breakaway” effect of the zirconium-water reaction. An animation model built by SNAP was also shown in this study.Keywords: MELCOR, SNAP, spent fuel pool, quenching
Procedia PDF Downloads 3594322 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay
Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe
Abstract:
Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling
Procedia PDF Downloads 1754321 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect
Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy
Abstract:
Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.Keywords: genetic algorithms, economic dispatch, pattern search
Procedia PDF Downloads 4444320 Critical Discourse Analysis of Political TV Talk Show of Pakistani Media
Authors: Sumaira Saleem, Sajjad Hussain, Asma Kashif Shahzad, Hina Shaheen
Abstract:
This study aims at exploring the relationship between language and ideology and how such relationships are represented in the analysis of spoken texts, following Van Dijk’s Socio Cognitive Model (2002). In this study, it is tried to show that political Talk shows broadcast by Private TV channels are working apparatuses of ideology and store meanings which are not always obvious for readers. This analysis was about the situation created by Arslan Iftkhar, the son of ex-Chief Justice of Pakistan, Iftikhar Muhammad Chaudry and PTI Chief Imran Khan. Arslan Iftikhar submitted an application against Imran Khan that he is not able to become a member of parliament of Pakistan. In the application, he demanded the documents, which are submitted by Imran Khan at the time of Election to the Election Commission of Pakistan. Murad Ali from PTI also submitted an application against PM Nawaz Sharif to the Election Commission of Pakistan for providing the copies. It also suggests that these talk shows mystify the agency of processes by using various strategies. In other words, critical text analyses reveal how these choices enable speakers to manipulate the realizations of agency and power in the representation of action to produce particular meanings which are not always explicit for all readers.Keywords: ECP, CDA, socio cognitive model, ideology, TV channels, power
Procedia PDF Downloads 7384319 A Simple Device for Characterizing High Power Electron Beams for Welding
Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran
Abstract:
Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.Keywords: electron beam welding, beam quality, high power, weld quality indicators
Procedia PDF Downloads 3244318 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility
Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez
Abstract:
Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.Keywords: heliostat, intelligent node, solar energy, wireless communication
Procedia PDF Downloads 4084317 Enhanced Energy Powers via Composites of Piezoelectric CH₃NH₃PbI₃ and Flexoelectric Zn-Al:Layered Double Hydroxides (LDH) Nanosheets
Authors: Soon-Gil Yoon, Min-Ju Choi, Sung-Ho Shin, Junghyo Nah, Jin-Seok Choi, Hyun-A Song, Goeun Choi, Jin-Ho Choy
Abstract:
Layered double hydroxides (LDHs) with positively charged brucite-like layers and negatively charged interlayer anions are considered a critical nanoscale building block with potential for application in catalysts, biological sensors, and optical, electrical, and magnetic devices. LDHs also have a great potential as an energy conversion device, a key component in common modern electronics. Although LDHs are theoretically predicted to be centrosymmetric, we report here the first observations of the flexoelectric nature of LDHs and demonstrate their potential as an effective energy conversion material. We clearly show a linear energy conversion relationship between the output powers and curvature radius via bending with both the LDH nanosheets and thin films, revealing a direct evidence for flexoelectric effects. These findings potentially open up avenues to incorporate a flexoelectric coupling phenomenon into centrosymmetric materials such as LDHs and to harvest high-power energy using LDH nanosheets. In the present study, for enhancement of the output power, Zn-Al:LDH nanosheets were composited with piezoelectric CH3NH3PbI3 (MAPbI3) dye films and their enhanced energy harvesting was demonstrated in detail.Keywords: layered double hydroxides, flexoelectric, piezoelectric, energy harvesting
Procedia PDF Downloads 4924316 Design and Validation of a Darrieus Type Hydrokinetic Turbine for South African Irrigation Canals Experimentally and Computationally
Authors: Maritz Lourens Van Rensburg, Chantel Niebuhr
Abstract:
Utilizing all available renewable energy sources is an ever-growing necessity, this includes a newfound interest into hydrokinetic energy systems, which open the door to installations where conventional hydropower shows no potential. Optimization and obtaining high efficiencies are key in these installations. In this study a vertical axis Darrieus hydrokinetic turbine is designed and constructed to address certain drawbacks experience by axial flow horizontal axis turbines in an irrigation channel. Many horizontal axis turbines have been well developed and optimized to have high efficiencies but depending on the conditions experienced in an open channel, the performance of these turbines may be adversely affected. The study analyses how the designed vertical axis turbine addresses the problems experienced by a horizontal axis turbine while still achieving a satisfactory efficiency. To be able to optimize the vertical axis turbine, a computational fluid dynamics model was validated to the experimental results obtained from the power generated from a test turbine installation operating at various rotational speeds. It was found that an accurate validated model can be obtained through validation of generated power output.Keywords: hydrokinetic, Darrieus, computational fluid dynamics, vertical axis turbine
Procedia PDF Downloads 1164315 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen
Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon
Abstract:
Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement
Procedia PDF Downloads 3884314 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.Keywords: CNT, efficiency, electric, microorganisms, sediment
Procedia PDF Downloads 4094313 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel
Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi
Abstract:
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.Keywords: heat transfer, mini channel, nanofluid, PEMFC
Procedia PDF Downloads 3394312 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor
Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez
Abstract:
Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste
Procedia PDF Downloads 1154311 Relationship Between Collegiality and the EQ of Leaders
Authors: Prakash Singh
Abstract:
Being a collegial leader would require such a person to promote an organizational passion that identifies and acknowledges the contribution of every employee. Collegiality is about sharing responsibilities and being accountable for one’s actions. Leaders must therefore be equipped with the knowledge, skills, abilities, beliefs, and dispositions that will allow them to succeed in their organizations. These abilities should not only dwell on cognition alone, but also, equally, on the development of their emotional intelligence (EQ). It is therefore a myth that leaders are entrusted with absolute power to manage all the resources of their organizations. Workers feel confident with leaders who are adaptable, flexible and supportive when it comes to shared decision-making and the devolution of power within the organization. Research strongly supports the notion that a leader requires a high level of EQ in addition to IQ (cognitive intelligence) to achieve the goals of the organization. On the other hand, traditional managers require cognitive abilities and technical skills to get the work done by their employees. This does not imply that management is not important in organizations. However, the approach of managers becomes highly critical when the focus is purely task orientated. Enabling or empowering employees, therefore, is an important aspect in establishing emotionally intelligent collaboration, as the willing and satisfied participation of the employees can be the result of leaders’ commitment to establishing a collegial working environment as demonstrated by their behaviours. This paper therefore analyses why it matters for ideal leaders to be imbued with the traits of EQ and collegiality.Keywords: collegiality, emotional intelligence, empowering employees, traditional managers
Procedia PDF Downloads 3514310 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material
Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim
Abstract:
The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor
Procedia PDF Downloads 2364309 Internal Displacement in Iraq due to ISIS Occupation and Its Effects on Human Security and Coexistence
Authors: Feisal Khudher Mahmood, Abdul Samad Rahman Sultan
Abstract:
Iraq had been a diverse society with races, cultures and religions that peacefully coexistence. The phenomenon of internal displacement occurred after April 2003, because of political instability as will as the deterioration of the political and security situation as a result of United States of America occupation. Biggest internal displacement have occurred (and keep happening) since 10th of June 2014 due to rise of Islamic State of Iraq and Syria (ISIS) and it’s occupation of one third of country territories. This crisis effected directly 3,275,000 people and reflected negatively on the social fabric of Iraq community and led to waves of sectorial violence that swept the country. Internal displaced communities are vulnerable, especially under non functional and weak government, that led to lose of essential human rights and dignity. Using Geographic Information System (GIS) and Geospatial Techniques, two types of internal displacement have been found; voluntary and forced. Both types of displacement are highly influenced by location, race and religion. The main challenge for Iraqi government and NGOs will be after defeating ISIS. Helping the displaced to resettle within their community and to re-establish the coexistence. By spatial-statical analysis hot spots of future conflicts among displaced community have been highlighted. This will help the government to tackle future conflicts before they occur. Also, it will be the base for social conflict early warning system.Keywords: internal displacement, Iraq, ISIS, human security, human rights, GIS, spatial-statical analysis
Procedia PDF Downloads 5254308 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine
Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju
Abstract:
This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.Keywords: AC current, arc welding machine, DC current, transformer, welds
Procedia PDF Downloads 1814307 Pellegrini-Stieda Syndrome: A Physical Medicine and Rehabilitation Approach
Authors: Pedro Ferraz-Gameiro
Abstract:
Introduction: The Pellegrini-Stieda lesion is the result of post-traumatic calcification and/or ossification on the medial collateral ligament (MCL) of the knee. When this calcification is accompanied by gonalgia and limitation of knee flexion, it is called Pellegrini-Stieda syndrome. The pathogenesis is probably the calcification of a post-traumatic hematoma at least three weeks after the initial trauma or secondary to repetitive microtrauma. On anteroposterior radiographs, a Pellegrini-Stieda lesion is a linear vertical ossification or calcification of the proximal portion of the MCL and usually near the medial femoral condyle. Patients with Pellegrini-Stieda syndrome present knee pain associated with loss of range of motion. The treatment is usually conservative with analgesic and anti-inflammatory drugs, either systemic or intra-articular. Physical medicine and rehabilitation techniques associated with shock wave therapy can be a way of reduction of pain/inflammation. Patients who maintain instability with significant limitation of knee mobility may require surgical excision. Methods: Research was done using PubMed central using the terms Pellegrini-Stieda syndrome. Discussion/conclusion: Medical treatment is the rule, with initial rest, anti-inflammatory, and physiotherapy. If left untreated, this ossification can potentially form a significant bone mass, which can compromise the range of motion of the knee. Physical medicine and rehabilitation techniques associated with shock wave therapy are a way of reduction of pain/inflammation.Keywords: knee, Pellegrini-Stieda syndrome, rehabilitation, shock waves therapy
Procedia PDF Downloads 1414306 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 3454305 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure
Authors: Mohamed Ouzzane, Mahmoud Bady
Abstract:
Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).Keywords: air cooling system, refrigeration, thermal ejector, thermal compression
Procedia PDF Downloads 1604304 Effect of Wolffia globosa Incorporation on the Physical, Phytochemical and Antioxidant Properties of Breadsticks
Authors: May Phyo Wai, Tanyawan Suantawee
Abstract:
The positive correlation between unhealthy diets (high in fats, sugars, carbohydrates, and low fibers) and the risk of non-communicable diseases (NCDs) like obesity, hypertension, diabetes, and heart diseases has led to a growing interest in healthier lifestyles and diets. Consequently, people are opting for foods rich in fiber and phytochemicals. Wolffia globosa, also known as duckweed or watermeal, is the smallest plant with high nutritional value, including protein, fiber, phytochemicals, and antioxidant properties. It offers numerous health benefits, such as improving gut health and lowering blood glucose levels, and it is widely available in Thailand. The purpose of this study was to develop nutritionally enhanced breadsticks utilizing vacuum heat-dried Wolffia globosa power (WP). Various concentrations of WP (0% as control, 5%, 10%, and 15 % w/w/) were added, and then the breadsticks’ physical properties (hardness, fracturability, and color), phytochemicals (total phenolic compounds: TPC and total flavonoid contents: TFC), and antioxidant properties (DPPH radical scavenging activity (DPPH) and ferric reducing antioxidant power (FRAP) assay) were investigated. Experiments were done by triplicates and data was analyzed by one-way ANOVA. The results showed that the hardness, measured by a texture analyzer, increased significantly (p<0.05) with higher WP concentrations, reaching 2,897.01 ± 77.31 g at 15% WP from 1,314.41 ± 32.52 g of the control. In contrast, the lightness (L*), redness (a*), and yellowness (b*) of the breadsticks significantly decreased (p < 0.05) in a dose-dependent manner with added WP. Incorporating WP, rich in phytochemicals and antioxidants, into the flour significantly enhanced the TPC and TFC of the breadsticks (p<0.05), with TPC and TFC increasing dose-dependently rising to 1.8-fold and 3.5-fold at 15% WP, respectively. The antioxidant power, assessed by DPPH and FRAP assays, also showed a similar trend, with significantly higher values at 10% and 15% WP (p<0.05). These results indicate that adding WP significantly boosted the TPC, TFC, DPPH, and FRAP values of the developed breadsticks. Therefore, incorporating WP into breadsticks might be a promising strategy for creating food products enriched with phytochemicals and antioxidants, offering consumers healthier options in the market.Keywords: antioxidant properties, breadsticks, phytochemicals, Wolffia globosa
Procedia PDF Downloads 374303 Ethical Concerns in the Internet of Things and Smart Devices: Case Studies and Analysis
Authors: Mitchell Browe, Oriehi Destiny Anyaiwe, Zahraddeen Gwarzo
Abstract:
The Internet of Things (IoT) is a major evolution of technology and of the internet, which has the power to revolutionize the way people live. IoT has the power to change the way people interact with each other and with their homes; It has the ability to give people new ways to interact with and monitor their health; It can alter socioeconomic landscapes by providing new and efficient methods of resource management, saving time and money for both individuals and society as a whole; It even has the potential to save lives through autonomous vehicle technology and smart security measures. Unfortunately, nearly every revolution bears challenges which must be addressed to minimize harm by the new technology upon its adopters. IoT represents an internet technology revolution which has the potential to risk privacy, safety, and security of its users, should devices be developed, implemented, or utilized improperly. This article examines past and current examples of these ethical faults in an attempt to highlight the importance of consumer awareness of potential dangers of these technologies in making informed purchasing and utilization decisions, as well as to reveal how deficiencies and limitations of IoT devices should be better addressed by both companies and by regulatory bodies. Aspects such as consumer trust, corporate transparency, and misuse of individual data are all factors in the implementation of proper ethical boundaries in the IoT.Keywords: IoT, ethical concerns, privacy, safety, security, smart devices
Procedia PDF Downloads 864302 Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability
Authors: Akshay B. Pawar, Rohit Y. Parasnis
Abstract:
Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV.Keywords: photoplethysmography, heart rate variability, correlation coefficient, Bland-Altman plot
Procedia PDF Downloads 3244301 Social Technology and Youth Justice: An Exploration of Ethical and Practical Challenges
Authors: Ravinder Barn, Balbir Barn
Abstract:
This paper outlines ethical and practical challenges in the building of social technology for use with socially excluded and marginalised groups. The primary aim of this study was to design, deploy and evaluate social technology that may help to promote better engagement between case workers and young people to help prevent recidivism, and support young people’s transition towards social inclusion in society. A total of 107 practitioners/managers (n=64), and young people (n=43) contributed to the data collection via surveys, focus groups and 1-1 interviews. Through a process of co-design where end-users are involved as key contributors to social technological design, this paper seeks to make an important contribution to the area of participatory methodologies by arguing that whilst giving ‘voice’ to key stakeholders in the research process is crucial, there is a risk that competing voices may lead to tensions and unintended outcomes. The paper is contextualized within a Foucauldian perspective to examine significant concepts including power, authority and surveillance. Implications for youth justice policy and practice are considered. The authors conclude that marginalized youth and over-stretched practitioners are better served when such social technology is perceived and adopted as a tool of empowerment within a framework of child welfare and child rights.Keywords: youth justice, social technology, marginalization, participatory research, power
Procedia PDF Downloads 4484300 Public Policy and Institutional Reforms in Ethiopian Experience: A Retrospective Policy Analysis
Authors: Tewele Gerlase Haile
Abstract:
Like any other country, Ethiopia's state government has reached today by undergoing many political changes. Until the last quarter of the 19th century, the aristocratic regimes of Ethiopia were using their infinite mystical power to shape the traditional public administrative institutions of the country. Mystical, feudal, social, and revolutionary political systems were used as sources of ruling power to the long-lasted monarchical, military and dictatorial regimes. For a country that is struggling to escape from the vicious cycle of poverty, famines, and civil wars, understanding how political regimes reform public policies and institutions is necessary for several reasons. A retrospective policy analysis approach is employed to determine how public policies are shaped by institutional factors and why the traditional public administration paradigm of Ethiopia continues to date despite regime changes. Using the experiences of political reforms practiced in four successive regimes (1916-2023), this retrospective analysis reveals a causal relationship among policy, institutional, and political failures. Moreover, Ethiopia's law-making and policy-making background significantly reflects the behavior of governments and their institutions. With a macro-level policy analysis in mind, the paper analyzes why the recent policy and institutional reforms twisted the country into unresolved military catastrophes.Keywords: public administration, public policy, institutional reform, political structure
Procedia PDF Downloads 244299 Physiological and Psychological Influence on Office Workers during Demand Response
Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura
Abstract:
In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.Keywords: demand response, illumination, questionnaire, electrocardiogram
Procedia PDF Downloads 3514298 From Myth to Screen: A Cultural Criticism of the Adaptation of Nordic Mythology in Marvel Cinematic Universe’s Thor Trilogy
Authors: Vathya Anindita Putri, Henny Saptatia Drajati Nugrahani
Abstract:
This research aims to explore the representation of Nordic mythology in the commercial film titled “Thor” produced by the Marvel Cinematic Universe. First, the Nordic mythology adaptation and representation in “Thor” compared to other media. Second, the importance of using the mise en scene technique, the comprehensive portrayal of Nordic mythology and the audience's experiences in enjoying the film. This research is conducted using qualitative methods. The two research questions are analyzed using three theories: Adaptation theory by Robert Stam, Mise en Scene theory by Jean-Luc Godard, and Cultural Criticism theory by Michel Foucault. Robert Stam emphasizes the importance of social and historical in understanding film adaptations. Film adaptations always occur in a specific cultural and historical context; therefore, authors and producers must consider these factors when creating a successful adaptation. Jean-Luc Godard uses the “politiques des auteurs” approach to understand that films are not just cultural products made for entertainment, but they are works of art by authors and directors. It is important to explore how authors and directors convey their ideas and emotions in their films, in this case, a film set in Nordic mythology. Foucault takes an approach to analyzing power that considers how power operates and influences social relationships in a specific context. Foucault’s theory is used to analyze how the representation of Nordic mythology is used as an instrument of power by the Marvel Cinematic Universe to influence how the audience views Nordic mythology. The initial findings of this research are that the fusion of Nordic mythology with modern superhero storytelling in the film “Thor” produced by Marvel, is successful. The film contains conflicts in the modern world and represents the symbolism of Nordic mythology. The rich and interesting atmosphere of Nordic mythology is presented through epic battle scenes, captivating character roles, and the use of visual effects that make the film more vivid and real.Keywords: adaptation theory, cultural criticism theory, film criticism, Marvel cinematic universe, Mise en Scene theory, Nordic mythology
Procedia PDF Downloads 864297 Three-Dimensional Carbon Foams for the Application as Electrode Material in Energy Storage Systems
Authors: H. Beisch, J. Marx, S. Garlof, R. Shvets, I. I. Grygorchak, A. Kityk, B. Fiedler
Abstract:
Carbon materials, especially three-dimensional carbon foams, show very high potential in the application as electrode material for energy storage systems such as batteries and supercapacitors with unique fast charging and discharging times. Regarding their high specific surface areas (SSA) high specific capacities can be reached. Globugraphite is a newly developed carbon foam with an interconnected globular carbon morphology. Especially, this foam has a statistically distributed hierarchical pore structure resulting from the manufacturing process based on sintered ceramic templates which are synthetized during a final chemical vapor deposition (CVD) process. For morphology characterization scanning electron (SEM) and transmission electron microscopy (TEM) is used. In addition, the SSA is carried out by nitrogen adsorption combined with the Brunauer–Emmett–Teller (BET) theory. Electrochemical measurements in organic and inorganic electrolyte provide high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. All values are summarized in a Ragone Diagram. Finally, power densities up to 833 W/kg and energy densities up to 48 Wh/kg could be achieved. The corresponding SSA is between 376 m²/g and 859 m²/g. For organic electrolyte a specific capacity of 71 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, CVD process, electron microscopy, Ragone diagram
Procedia PDF Downloads 1744296 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach
Authors: N. Balamurugan, N. V. Mahalakshmi
Abstract:
Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic
Procedia PDF Downloads 2954295 Public Participation in Political Transformation: From the Coup D’etat in 2014 to the Events Leading up to the Proposed Election in 2018 in Thailand
Authors: Pataramon Satalak, Sakrit Isariyanon, Teerapong Puripanik
Abstract:
This article uses the recent events in Thailand as a case study for examining why democratic transition is necessary during political upheaval to ensure that the people’s power remains unaffected. After seizing power in May 2014, the military, backed by anti-government protestors, selected and established their own system to govern the country. They set up the National Council for Peace and Order (NCPO) which established a People’s Assembly, aiming to reach a compromise between the conflicting opinions of former, pro-government and anti-government protesters. It plans to achieve this through political reform before returning sovereign power to the people via an election in 2018. If a governmental authority is not representative of the people (e.g. a military government) it does not count as a legitimate government. During the last four years of military government, from May 2014 to January 2018, their rule of Thailand has been widely controversial, specifically regarding their commitment to democracy, human rights violations and their manipulation of the rule of law. Democratic legitimacy relies not only on established mechanisms for public participation (like referendums or elections) but also public participation based on accessible and educational reform (often via NGOs) to ensure that the free and fair will of the people can be expressed. Through their actions over the last three years, the Thai military government has damaged both of these components, impacting future public participation in politics. The authors make some observations about the specific actions the military government has taken to erode the democratic legitimacy of future public participation: the increasing dominance of military courts over civil courts; civil society’s limited involvement in political activities; the drafting of a new constitution and their attempt to master support through referenda and its consequence for delaying organic law-making process; the structure of the legislative powers (Senate and the members of parliament); and the control of people’s basic freedoms of expression, movement and assembly in political activities. One clear consequence of the military government’s specific actions over the last three years is the increased uncertainty amongst Thai people that their fundamental freedoms and political rights will be respected in the future. This will directly affect their participation in future democratic processes. The military government’s actions (e.g. their response to the UN representatives) will also have influenced potential international engagement in Thai civil society to help educate disadvantaged people about their rights, and their participation in the political arena. These actions challenge the democratic idea that there should be a checking and balancing of power between people and government. These examples provide evidence that a democratic transition is crucial during any process of political transformation.Keywords: political tranformation, public participation, Thailand coup d'etat 2014, election 2018
Procedia PDF Downloads 1484294 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners
Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda
Abstract:
In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner
Procedia PDF Downloads 157