Search results for: orientation features
2282 Evaluation of Fusion Sonar and Stereo Camera System for 3D Reconstruction of Underwater Archaeological Object
Authors: Yadpiroon Onmek, Jean Triboulet, Sebastien Druon, Bruno Jouvencel
Abstract:
The objective of this paper is to develop the 3D underwater reconstruction of archaeology object, which is based on the fusion between a sonar system and stereo camera system. The underwater images are obtained from a calibrated camera system. The multiples image pairs are input, and we first solve the problem of image processing by applying the well-known filter, therefore to improve the quality of underwater images. The features of interest between image pairs are selected by well-known methods: a FAST detector and FLANN descriptor. Subsequently, the RANSAC method is applied to reject outlier points. The putative inliers are matched by triangulation to produce the local sparse point clouds in 3D space, using a pinhole camera model and Euclidean distance estimation. The SFM technique is used to carry out the global sparse point clouds. Finally, the ICP method is used to fusion the sonar information with the stereo model. The final 3D models have a précised by measurement comparing with the real object.Keywords: 3D reconstruction, archaeology, fusion, stereo system, sonar system, underwater
Procedia PDF Downloads 2992281 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning
Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee
Abstract:
Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis
Procedia PDF Downloads 1482280 Biomorphological Characteristics, Habitats, Role in Plant Communities and Raw Reserves of Ayuga Turkestanica (Regel) Briq. (Lamiaceae) In Uzbekistan
Authors: Akmal E. Egamberdiev, Alim M. Nigmatullaev, Trobjon Kh. Makhkamov
Abstract:
The results of scientific research on the biomorphological features of Ajuga turkestanica (Regel) Brig., its role in plant communities, modern distribution areas, and raw material reserves are presented. Plant ontogeny is divided into 3 periods and 9 growth stages. Information on its seasonal and diurnal flowering and seed productivity is provided. As a result of the research, the participation of the studied species in plant communities, its place, the structure and floristic composition of communities were determined, and as a result, for the first time, the description of 11 new associations in 7 formations of Ajuga turkestanica, and a schematic map of the geolocation of formations and associations of plants in Uzbekistan is given. A. turkestanica (within the range) are divided into 3 categories and 21 massifs. Its current biological reserve is 93.5±35.3 tons, its usable reserve is 46.2±13.8 tons, and the reserve that can be prepared in 1 year is 28.4±5.42 tons.Keywords: ontogeny, seed productivity, seasonal flowering, formation, association, dominant, subdominant, areal, biological reserve, operational reserve, annual reserve, GIS map
Procedia PDF Downloads 992279 Natural Preservatives: An Alternative for Chemical Preservative Used in Foods
Authors: Zerrin Erginkaya, Gözde Konuray
Abstract:
Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.Keywords: animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives
Procedia PDF Downloads 3772278 The Restoration of the Old District in the Urbanization: The Case Study of Samsen Riverside Community, Dusit District, Bangkok
Authors: Tikhanporn Punluekdej, Saowapa Phaithayawat
Abstract:
The objectives of this research are: 1) to discover the mechanism in the restoration process of the old district, and 2) to study the people participation in the community with related units. This research utilizes qualitative research method together with the tools used in the study of historical and anthropological disciplines. The research revealed that the restoration process of the old district started with the needs of the local people in the community. These people are considered as a young generation in the community. The leading group of the community played a vital role in the restoration process by igniting the whole idea and followed by the help from those who have lived in the area of more than fifty years. The restoration process is the genuine desire of the local people without the intervention of the local politics. The core group would coordinate with the related units in which there were, for instance, the academic institutions in order to find out the most dominant historical features of the community including its settlement. The Crown Property Bureau, as the sole-owner of the land, joined the restoration in the physical development dimension. The restoration was possible due to the cooperation between local people and related units, under the designated plans, budget, and social activities.Keywords: restoration, urban area, old district, people participation
Procedia PDF Downloads 4122277 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 2012276 Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah, Kuwait
Authors: Ahmed M. Al-Hasem
Abstract:
A study of the tidal current behavior and bathymetric changes was undertaken in order to establish an information base for future coastal management. The average velocity for tidal current was 0.46 m/s and the maximum velocity was 1.08 m/s during ebb tide. During spring tides, maximum velocities range from 0.90 m/s to 1.08 m/s, whereas maximum velocities vary from 0.40 m/s to 0.60 m/s during neap tides. Despite greater current velocities during flood tide, the bathymetric features enhance the dominance of the ebb tide. This can be related to the abundance of fine sediments from the ebb current approaching the study area, and the relatively coarser sediment from the approaching flood current. Significant bathymetric changes for the period from 1985 to 1998 were found with dominance of erosion process. Approximately 96.5% of depth changes occurred within the depth change classes of -5 m to 5 m. The high erosion processes within the study area will subsequently result in high accretion processes, particularly in the north, the location of the proposed Boubyan Port and its navigation channel.Keywords: bathymetric change, Boubyan island, GIS, Khor Abdullah, tidal current behavior
Procedia PDF Downloads 2892275 Embedded Test Framework: A Solution Accelerator for Embedded Hardware Testing
Authors: Arjun Kumar Rath, Titus Dhanasingh
Abstract:
Embedded product development requires software to test hardware functionality during development and finding issues during manufacturing in larger quantities. As the components are getting integrated, the devices are tested for their full functionality using advanced software tools. Benchmarking tools are used to measure and compare the performance of product features. At present, these tests are based on a variety of methods involving varying hardware and software platforms. Typically, these tests are custom built for every product and remain unusable for other variants. A majority of the tests goes undocumented, not updated, unusable when the product is released. To bridge this gap, a solution accelerator in the form of a framework can address these issues for running all these tests from one place, using an off-the-shelf tests library in a continuous integration environment. There are many open-source test frameworks or tools (fuego. LAVA, AutoTest, KernelCI, etc.) designed for testing embedded system devices, with each one having several unique good features, but one single tool and framework may not satisfy all of the testing needs for embedded systems, thus an extensible framework with the multitude of tools. Embedded product testing includes board bring-up testing, test during manufacturing, firmware testing, application testing, and assembly testing. Traditional test methods include developing test libraries and support components for every new hardware platform that belongs to the same domain with identical hardware architecture. This approach will have drawbacks like non-reusability where platform-specific libraries cannot be reused, need to maintain source infrastructure for individual hardware platforms, and most importantly, time is taken to re-develop test cases for new hardware platforms. These limitations create challenges like environment set up for testing, scalability, and maintenance. A desirable strategy is certainly one that is focused on maximizing reusability, continuous integration, and leveraging artifacts across the complete development cycle during phases of testing and across family of products. To get over the stated challenges with the conventional method and offers benefits of embedded testing, an embedded test framework (ETF), a solution accelerator, is designed, which can be deployed in embedded system-related products with minimal customizations and maintenance to accelerate the hardware testing. Embedded test framework supports testing different hardwares including microprocessor and microcontroller. It offers benefits such as (1) Time-to-Market: Accelerates board brings up time with prepacked test suites supporting all necessary peripherals which can speed up the design and development stage(board bring up, manufacturing and device driver) (2) Reusability-framework components isolated from the platform-specific HW initialization and configuration makes the adaptability of test cases across various platform quick and simple (3) Effective build and test infrastructure with multiple test interface options and preintegrated with FUEGO framework (4) Continuos integration - pre-integrated with Jenkins which enabled continuous testing and automated software update feature. Applying the embedded test framework accelerator throughout the design and development phase enables to development of the well-tested systems before functional verification and improves time to market to a large extent.Keywords: board diagnostics software, embedded system, hardware testing, test frameworks
Procedia PDF Downloads 1452274 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 172273 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems
Authors: Yuzuru Mitsui, Takashi Ikegami
Abstract:
The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.Keywords: chaos, density effect, population dynamics, Taylor’s law
Procedia PDF Downloads 1742272 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory
Authors: E. K. A. Ogunshile
Abstract:
This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.Keywords: conformance testing, finite state machine, software testing, x-machine
Procedia PDF Downloads 2682271 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications
Authors: Yasith Mindula Saipath Wickramasinghe
Abstract:
Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating
Procedia PDF Downloads 1182270 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2762269 Scaling Up Psychosocial Wellbeing of Orphans and Vulnerable Learners in Rural Schools in Lesotho: An Ethnopsychology Approach
Authors: Fumane Portia Khanare
Abstract:
This paper explores strategies to improve the psychosocial wellbeing of orphans and vulnerable learners (OVLs) in rural schools in Lesotho that seem essential for their success, in anticipation of, and in the context of global education. Various strategies to improve psychosocial wellbeing are considered necessary in that they are inclusive and buffer other forms of conditions beyond traditional and Eurocentric forms in orientation. Furthermore, they bring about the local experiences and particularly of the learners and schools in rural areas – all of which constitute ethnopsychology. COVID-19 pandemic has enthused the demands for collaboration and responsive support for learners within rural and many deprived contexts in Lesotho. However, the increase of OVLs in the education sector has also sparked the debate of how many rural schools with a lack of resources, inadequate teacher training, declining unemployment and the detriment of COVID-19 throughout Lesotho affected the psychosocial wellbeing of these learners. In some cases, the pandemic has created opportunities to explore existing, forgotten or ignored resources dated back to the pre-colonial era in Lesotho, and emphasizing to have an optimistic outlook on life as a result of collaboration and appreciating local knowledge. In order to scale up the psychosocial wellbeing of OVLs, there is a need to explore various strategies to improve their psychosocial wellbeing, in which all learners can succeed during the COVID-19 pandemic and beyond, thereby promoting the agency of young people from the rural areas towards building supportive learning environments. The paper draws on qualitative participatory arts-based study data generated by 30 learners in two rural secondary schools in Lesotho. Thematic analysis was employed to provide an in-depth understanding of learners' psychosocial needs and strategies to improve their psychosocial wellbeing. The paper is guided by ethnopsychology – a strength-based perspective, which posits that in the most difficult situations, individuals including, young people have strengths, can collaborate and find solutions that respond to their challenges. This was done by examining how various facets of their environments such as peers, teachers, schools’ environment, family and community played out in creating supportive strategies to improve the psychosocial wellbeing of OVLs which buffer the successful completion of their secondary school education. It is recommended that ethnopsychology should recognise and be used under the realm of positive wellbeing in rural schools in Lesotho.Keywords: arts-based research, ethnopsychology, Lesotho, orphans and vulnerable learners, psychosocial wellbeing, rural schools.
Procedia PDF Downloads 2082268 Scaling Up Psychosocial Wellbeing of Orphans and Vulnerable Learners in Rural Schools in Lesotho: An Ethnopsychology Approach
Authors: Fumane Portia Khanare
Abstract:
This paper explores strategies to improve the psychosocial wellbeing of orphans and vulnerable learners (OVLs) in rural schools in Lesotho that seem essential for their success, in anticipation of, and in the context of global education. Various strategies to improve the psychosocial wellbeing are considered necessary in that they are inclusive and buffer other forms of conditions beyond traditional and Eurocentric forms in orientation. Furthermore, they bring about the local experiences and particularly of the learners and schools in rural areas – all of which constitute ethnopsychology. COVID-19 pandemic has enthused the demands for collaboration and responsive support for learners within rural and many deprived contexts in Lesotho. However, the increase of OVLs in the education sector has also sparked the debate of how much rural schools with lack of resources, inadequate teacher training, declining unemployment and the detriment of COVID-19 throughout Lesotho affected the psychosocial wellbeing of these learners. In some cases, the pandemic has created opportunities to explore existing, forgotten or ignored resources dated back to pre-colonial era in Lesotho, and emphasizing to have an optimistic outlook on life as a result of collaboration and appreciating local knowledge. In order to scale up the psychosocial wellbeing of OVLs there is a need to explore various strategies to improve their psychosocial wellbeing, in which all learners can succeed during COVID-19 pandemic and beyond, thereby promoting agency of young people from the rural areas towards building supportive learning environments. The paper draws on a qualitative participatory arts-based study data generated by 30 learners in two rural secondary schools in Lesotho. Thematic analysis was employed to provide an in-depth understanding of learners' psychosocial needs and strategies to improve their psychosocial wellbeing. The paper is guided by ethnopsychology – a strength-based perspective, which posit that in the most difficult situations, individual including, young people have strengths, can collaborate and find solutions that respond to their challenges. This was done by examining how various facets of their environments such as peers, teachers, schools’ environment, family and community played out in creating supportive strategies to improve the psychosocial wellbeing of OVLs which buffer their successful completion of their secondary school education. It is recommended that ethnopsychology should recognised and be used under the realm of positive wellbeing in rural schools in Lesotho.Keywords: arts-based research, ethnopsychology, orphans and vulnerable learners, Lesotho, psychosocial wellbeing, rural schools
Procedia PDF Downloads 1562267 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data
Authors: M. Lghoul, N. El Goumi, M. Guernouche
Abstract:
In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.Keywords: magnetic, gravity, structural trend, depth to basement
Procedia PDF Downloads 1322266 Face Recognition Using Eigen Faces Algorithm
Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale
Abstract:
Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.Keywords: face detection, face recognition, eigen faces, algorithm
Procedia PDF Downloads 3612265 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip
Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi
Abstract:
This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.Keywords: MHD nanofluid, porous medium, rotating disk, slip effect
Procedia PDF Downloads 2602264 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study
Authors: M. Ramadan, B. Salah
Abstract:
This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.Keywords: lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping
Procedia PDF Downloads 2292263 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies
Authors: Lindelwa Mngomezulu, Tonderai Muchenje
Abstract:
Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.Keywords: e-mail security, cyber-attacks, data integrity, authentication
Procedia PDF Downloads 1362262 Fabrication of Hollow Germanium Spheres by Dropping Method
Authors: Kunal D. Bhagat, Truong V. Vu, John C. Wells, Hideyuki Takakura, Yu Kawano, Fumio Ogawa
Abstract:
Hollow germanium alloy quasi-spheres of diameters 1 to 2 mm with a relatively smooth inner and outer surface have been produced. The germanium was first melted at around 1273 K and then exuded from a coaxial nozzle into an inert atmosphere by argon gas supplied to the inner nozzle. The falling spheres were cooled by water spray and collected in a bucket. The spheres had a horn type of structure on the outer surface, which might be caused by volume expansion induced by the density difference between solid and gas phase. The frequency of the sphere formation was determined from the videos to be about 133 Hz. The outer diameter varied in the range of 1.3 to 1.8 mm with a wall thickness in the range of 0.2 to 0.5 mm. Solid silicon spheres are used for spherical silicon solar cells (S₃CS), which have various attractive features. Hollow S₃CS promise substantially higher energy conversion efficiency if their wall thickness can be kept to 0.1–0.2 mm and the inner surface can be passivated. Our production of hollow germanium spheres is a significant step towards the production of hollow S₃CS with, we hope, higher efficiency and lower material cost than solid S₃CS.Keywords: hollow spheres, semiconductor, compound jet, dropping method
Procedia PDF Downloads 2082261 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter
Authors: B. Kędra, R. Małkowski
Abstract:
This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.Keywords: power converter, Simulink Real-Time, Matlab, load, tap controller
Procedia PDF Downloads 2422260 Usage and Benefits of Handheld Devices as Educational Tools in Higher Institutions of Learning in Lagos State, Nigeria
Authors: Abiola A. Sokoya
Abstract:
Handheld devices are now in use as educational tools for learning in most of the higher institutions, because of the features and functions which can be used in an academic environment. This study examined the usage and the benefits of handheld devices as learning tools. A structured questionnaire was used to collect data, while the data collected was analyzed using simple percentage. It was, however, observed that handheld devices offer numerous functions and application for learning, which could improve academic performance of students. Students are now highly interested in using handheld devices for mobile learning apart from making and receiving calls. The researchers recommended that seminars be organized for students on functions of some common handheld devices that can aid learning for academic purposes. It is also recommended that management of each higher institution should make appropriate policies in-line with the usage of handheld technologies to enhance mobile learning. Government should ensure that appropriate policies and regulations are put in place for the importation of high quality handheld devices into the country, Nigeria being a market place for the technologies. By this, using handheld devices for mobile learning will be enhanced.Keywords: handheld devices, educational tools, mobile e- learning, usage, benefits
Procedia PDF Downloads 2292259 Nanoscale Metal-Organic Framework Coated Carbon Nitride Nanosheet for Combination Cancer Therapy
Authors: Rui Chen, Jinfeng Zhang, Chun-Sing Lee
Abstract:
In the past couple of decades, nanoscale metal-organic frameworks (NMOFs) have been highlighted as promising delivery platforms for biomedical applications, which combine many potent features such as high loading capacity, progressive biodegradability and low cytotoxicity. While NMOF has been extensively used as carriers for drugs of different modalities, so far there is no report on exploiting the advantages of NMOF for combination therapy. Herein, we prepared core-shell nanoparticles, where each nanoparticle contains a single graphitic-phase carbon nitride (g-C3N4) nanosheet encapsulated by a zeolitic-imidazolate frameworks-8 (ZIF-8) shell. The g-C3N4 nanosheets are effective visible-light photosensitizer for photodynamic therapy (PDT). When hosting DOX (doxorubicin), the as-synthesized core-shell nanoparticles could realize combinational photo-chemo therapy and provide dual-color fluorescence imaging. Therefore, we expect NMOFs-based core-shell nanoparticles could provide a new way to achieve much-enhanced cancer therapy.Keywords: carbon nitride, combination therapy, drug delivery, nanoscale metal-organic frameworks
Procedia PDF Downloads 4252258 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 682257 Sustainability in the Purchase of Airline Tickets: Analysis of Digital Communication from the Perspective of Neuroscience
Authors: Rodríguez Sánchez Carla, Sancho-Esper Franco, Guillen-Davo Marina
Abstract:
Tourism is one of the most important sectors worldwide since it is an important economic engine for today's society. It is also one of the sectors that most negatively affect the environment in terms of CO₂ emissions due to this expansion. In light of this, airlines are developing Voluntary Carbon Offset (VCO). There is important evidence focused on analyzing the features of these VCO programs and their efficacy in reducing CO₂ emissions, and findings are mixed without a clear consensus. Different research approaches have centered on analyzing factors and consequences of VCO programs, such as economic modelling based on panel data, survey research based on traveler responses or experimental research analyzing customer decisions in a simulated context. This study belongs to the latter group because it tries to understand how different characteristics of an online ticket purchase website affect the willingness of a traveler to choose a sustainable one. The proposed behavioral model is based on several theories, such as the nudge theory, the dual processing ELM and the cognitive dissonance theory. This randomized experiment aims at overcoming previous studies based on self-reported measures that mainly study sustainable behavioral intention rather than actual decision-making. It also complements traditional self-reported independent variables by gathering objective information from an eye-tracking device. This experiment analyzes the influence of two characteristics of the online purchase website: i) the type of information regarding flight CO₂ emissions (quantitative vs. qualitative) and the comparison framework related to the sustainable purchase decision (negative: alternative with more emissions than the average flight of the route vs. positive: alternative with less emissions than the average flight of the route), therefore it is a 2x2 experiment with four alternative scenarios. A pretest was run before the actual experiment to refine the experiment features and to check the manipulations. Afterward, a different sample of students answered the pre-test questionnaire aimed at recruiting the cases and measuring several pre-stimulus measures. One week later, students came to the neurolab at the University setting to be part of the experiment, made their decision regarding online purchases and answered the post-test survey. A final sample of 21 students was gathered. The committee of ethics of the institution approved the experiment. The results show that qualitative information generates more sustainable decisions (less contaminant alternative) than quantitative information. Moreover, evidence shows that subjects are more willing to choose the sustainable decision to be more ecological (comparison of the average with the less contaminant alternative) rather than to be less contaminant (comparison of the average with the more contaminant alternative). There are also interesting differences in the information processing variables from the eye tracker. Both the total time to make the choice and the specific times by area of interest (AOI) differ depending on the assigned scenario. These results allow for a better understanding of the factors that condition the decision of a traveler to be part of a VCO program and provide useful information for airline managers to promote these programs to reduce environmental impact.Keywords: voluntary carbon offset, airline, online purchase, carbon emission, sustainability, randomized experiment
Procedia PDF Downloads 732256 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali
Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan
Abstract:
Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.Keywords: land use/cover, urban, Bali, ASTER
Procedia PDF Downloads 5422255 Acute Superior Mesenteric Artery Thrombosis Leading to Pneumatosis Intestinalis and Portal Venous Gas in a Young Adult after COVID-19 Vaccination
Authors: Prakash Dhakal
Abstract:
Hepatic portal venous gas (HPVG) is diagnosed via computed tomography due to unusual imaging features. HPVG, when linked with pneumatosis intestinalis, has a high mortality rate and requires urgent intervention. We present a case of a 26-year-old young adult with superior mesenteric artery thrombosis who presented with severe abdominal pain. He had a history of COVID vaccination (First dose of COVISHILED) 15 days back. On imaging, HPVG and pneumatosis intestinalis were seen owing to the urgent intervention of the patient. The reliable interpretation of the imaging findings along with quick intervention led to a favorable outcome in our case. Herein we present a thorough review of the patient with a history of COVID-19 vaccination with superior mesenteric artery thrombosis leading to bowel ischemia and hepatic portal venous gas. The patient underwent subtotal small bowel resection.Keywords: COVID-19 vaccination, SMA thrombosis, portal venoius gas, pneumatosis intestinalis
Procedia PDF Downloads 902254 PostureCheck with the Kinect and Proficio: Posture Modeling for Exercise Assessment
Authors: Elham Saraee, Saurabh Singh, Margrit Betke
Abstract:
Evaluation of a person’s posture while exercising is important in physical therapy. During a therapy session, a physical therapist or a monitoring system must assure that the person is performing an exercise correctly to achieve the desired therapeutic effect. In this work, we introduce a system called POSTURECHECK for exercise assessment in physical therapy. POSTURECHECK assesses the posture of a person who is exercising with the Proficio robotic arm while being recorded by the Microsoft Kinect interface. POSTURECHECK extracts unique features from the person’s upper body during the exercise, and classifies the sequence of postures as correct or incorrect using Bayesian estimation and majority voting. If POSTURECHECK recognizes an incorrect posture, it specifies what the user can do to correct it. The result of our experiment shows that POSTURECHECK is capable of recognizing the incorrect postures in real time while the user is performing an exercise.Keywords: Bayesian estimation, majority voting, Microsoft Kinect, PostureCheck, Proficio robotic arm, upper body physical therapy
Procedia PDF Downloads 2842253 Recognising Patients’ Perspective on Health Behaviour Problems Through Laughter: Implications for Patient-Centered Care Practice in Behaviour Change Consultations in General Practice
Authors: Binh Thanh Ta, Elizabeth Sturgiss
Abstract:
Central to patient-centered care is the idea of treating a patient as a person and understanding their perspectives regarding their health conditions and care preferences. Surprisingly, little is known about how GPs can understand their patients’ perspectives. This paper addresses the challenge of understanding patient perspectives in behavior change consultations by adopting Conversation Analysis (CA), which is an empirical research approach that allows both researchers and the audience to examine patients’ perspectives as displayed in GP-patient interaction. To understand people’s perspectives, CA researchers do not rely on what they say but instead on how they demonstrate their endogenous orientations to social norms when they interact with each other. Underlying CA is the notion that social interaction is orderly by all means. (It is important to note that social orders should not be treated as exogenous sets of rules that predetermine human behaviors. Rather social orders are constructed and oriented by social members through their interactional practices. Also, note that these interactional practices are the resources shared by all social members). As CA offers tools to uncover the orderliness of interactional practices, it not only allows us to understand the perspective of a particular patient in a particular medical encounter but, more importantly, enables us to recognise the shared interactional practice for signifying a particular perspective. Drawing on the 10 video-recorded consultations on behavior change in primary care, we have discovered the orderliness of patient laughter when reporting health behaviors, which signifies their orientation to the problematic nature of the reported behaviors. Among 24 cases where patients reported their health behaviors, we found 19 cases in which they laughed while speaking. In the five cases where patients did not laugh, we found that they explicitly framed their behavior as unproblematic. This finding echoes the CA body research on laughter, which suggests that laughter produced by first speakers (as opposed to laughing in response to what has been said earlier) normally indicates some sort of problems oriented to the self (e.g. self-tease, self-depreciation, etc.). This finding points to the significance of understanding when and why patients laugh; such understanding would assist GPs to recognise whether patients treat their behavior as problematic or not, thereby producing responses sensitive to patient perspectives.Keywords: patient centered care, laughter, conversation analysis, primary care, behaviour change consultations
Procedia PDF Downloads 99