Search results for: intergenerational technology learning
11141 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 7411140 Teaching the Tacit Nuances of Japanese Onomatopoeia through an E-Learning System: An Evaluation Approach of Narrative Interpretation
Authors: Xiao-Yan Li, Takashi Hashimoto, Guanhong Li, Shuo Yang
Abstract:
In Japanese, onomatopoeia is an important element in the lively expression of feelings and experiences. It is very difficult for students of Japanese to acquire onomatopoeia, especially, its nuances. In this paper, based on traditional L2 learning theories, we propose a new method to improve the efficiency of teaching the nuances – both explicit and tacit - to non-native speakers of Japanese. The method for teaching the tacit nuances of onomatopoeia consists of three elements. First is to teach the formal rules representing the explicit nuances of onomatopoeic words. Second is to have the students create new onomatopoeic words by utilizing those formal rules. The last element is to provide feedback by evaluating the onomatopoeias created. Our previous study used five-grade relative estimation. However students were confused about the five-grade system, because they could not understand the evaluation criteria only based on a figure. In this new system, then, we built an evaluation database through native speakers’ narrative interpretation. We asked Japanese native speakers to describe their awareness of the nuances of onomatopoeia in writing. Then they voted on site and defined priorities for showing to learners on the system. To verify the effectiveness of the proposed method and the learning system, we conducted a preliminary experiment involving two groups of subjects. While Group A got feedback about the appropriateness of their onomatopoeic constructions from the native speakers’ narrative interpretation, Group B got feedback just in the form of the five-grade relative estimation. A questionnaire survey administered to all of the learners clarified our learning system availability and also identified areas that should be improved. Repetitive learning of word-formation rules, creating new onomatopoeias and gaining new awareness from narrative interpretation is the total process used to teach the explicit and tacit nuances of onomatopoeia.Keywords: onomatopoeia, tacit nuance, narrative interpretation, e-learning system, second language teaching
Procedia PDF Downloads 39611139 Evaluating the Learning Outcomes of Physical Therapy Clinical Fieldwork Course
Authors: Hui-Yi Wang, Shu-Mei Chen, Mei-Fang Liu
Abstract:
Background and purpose: Providing clinical experience in medical education is an important discipline method where students can gradually apply their academic knowledge to clinical situations. The purpose of this study was to establish self-assessment questionnaires for students to assess their learning outcomes for two fields of physical therapy, orthopedic physical therapy, and pediatric physical therapy, in a clinical fieldwork course. Methods: The questionnaires were developed based on the core competence dimensions of the course. The content validity of the questionnaires was evaluated and established by expert meetings. Among the third-year undergraduate students who took the clinical fieldwork course, there were 49 students participated in this study. Teachers arranged for the students to study two professional fields, and each professional field conducted a three-week clinical lesson. The students filled out the self-assessment questionnaires before and after each three-week lesson. Results: The self-assessment questionnaires were established by expert meetings that there were six core competency dimensions in each of the two fields, with 20 and 21 item-questions, respectively. After each three-week clinical fieldwork, the self-rating scores in each core competency dimension were higher when compared to those before the course, indicating having better clinical abilities after the lessons. The best self-rating scores were the dimension of attitude and humanistic literacy, and the two lower scores were the dimensions of professional knowledge and skills and problem-solving critical thinking. Conclusions: This study developed questionnaires for clinical fieldwork courses to reflect students' learning outcomes, including the performance of professional knowledge, practice skills, and professional attitudes. The use of self-assessment of learning performance can help students build up their reflective competencies. Teachers can guide students to pay attention to the performance of abilities in each core dimension to enhance the effectiveness of learning through self-reflection and improvement.Keywords: physical therapy, clinical fieldwork course, learning outcomes assessment, medical education, self-reflection ability
Procedia PDF Downloads 11611138 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 12111137 Large Panel Technology Apartments of Yesterday and Today: Quality Aspects
Authors: Barbara Gronostajska
Abstract:
Currently, housing conditions of buildings executed in large panel technology are deteriorating. The article presents modernization solutions implemented throughout the variety of architectural activities (adding of balconies and staircases, connecting apartments) which guarantee very intriguing results that meet the needs and expectations of the modern society.Keywords: housing estate, apartments, flats, modernization, plate blocks
Procedia PDF Downloads 48011136 Individual Differences and Language Learning Strategies
Authors: Nilgun Karatas, Bihter Sakin
Abstract:
In this study, the relationships between the use of language learning strategies and English language exit exam success were investigated in the university EFL learners’ context. The study was conducted at Fatih University Prep School. To collect data 3 classes from the A1 module in English language classes completed a questionnaire known as the English Language Learning Strategy Inventory or ELLSI. The data for the present study were collected from the preparatory class students who are studying English as a second language at the School of Foreign Languages. The students were placed into four different levels of English, namely A1, A2, B1, and B2 level of English competency according to European Union Language Proficiency Standard, by means of their English placement test results. The Placement test was conveyed at the beginning of the spring semester in 2014-2015.The ELLSI consists of 30 strategy items which students are asked to rate from 1 (low frequency) to 5 (high frequency) according to how often they use them. The questionnaire and exit exam results were entered onto SPSS and analyzed for mean frequencies and statistical differences. Spearman and Pearson correlation were used in a detailed way. There were no statistically significant results between the frequency of strategy use and exit exam results. However, most questions correlate at a significant level with some of the questions.Keywords: individual differences, language learning strategies, Fatih University, English language
Procedia PDF Downloads 49111135 Planning for a Smart Sustainable Cities: A Case Study
Authors: Ajaykumar Kambekar, Nikita Kalantri
Abstract:
Due to faster urbanization; developing nations will have to look forward towards establishing new planned cities those are environmentally friendly. Due to growth in Information and Communication Technology (ICT), it is evident that the rise of smart cities is witnessed as a promising trend for future growth; however, technology alone cannot make a city as a smart city. Cities must use smart systems to enhance the quality of life of its citizens and to achieve sustainable growth. Recent trends in technology may offer some indication towards harnessing our cities potential as the new engines of sustainable growth. To overcome the problems of mega-urbanization, new concept of smart cities has been introduced. The current research aims to reduce the knowledge gap in urban planning by exploring the concept of smart cities considering sustainability as a major focus. The aim of this paper is to plan for an entire smart city. The paper analyses sustainable development and identifies the key factors for the creation of future smart cities. The study also emphasizes the use of advanced planning and scheduling software such as Microsoft Project (MSP).Keywords: urbanization, planned cities, information and communication technology, sustainable growth
Procedia PDF Downloads 30911134 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 8511133 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 10511132 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 6611131 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 9911130 Exploring a Net-Metering Policy Towards Solar Energy Technology Adoption and Sustainability
Authors: Jane Osei, Kerry Brown, Mehran Nejati
Abstract:
Numerous studies have established that solar energy is the second most prevalent form of alternative renewable energy globally, particularly in regions with abundant sunlight. The adoption and ongoing sustainability of solar technology are pivotal for the transition to renewable energy sources. However, the literature indicates that some countries, especially in the developing world, may impede this transition. Despite various policy initiatives aimed at supporting the adoption of solar technology, the long-term effectiveness of these policies remains uncertain. This study investigates the current policy drivers influencing the success or failure of solar energy technology adoption and sustainability. It employs a qualitative review approach to compare strategies for implementing the net-metering policy incentive in both developing and developed countries, identifying successful and unsuccessful strategies and drawing conclusions on the lessons learned. The study's findings reveal that the effective implementation of net metering depends on regional variations in solar radiation and differing levels of electricity demand across regions. Further, the study found that the implementation of net metering has faced challenges in some countries due to regulatory barriers and bottlenecks that hinder private sector involvement and business sustainability. Economic stability also significantly impacts net metering implementation. This study concludes that governments should strive to balance benefit-sharing to attract more private-sector investment in solar technology while ensuring the viability of government energy regulatory bodies.Keywords: solar energy technology, adoption, sustainability, net-metering
Procedia PDF Downloads 3511129 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement
Authors: Zahra Alikhani Koopaei
Abstract:
In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.Keywords: intelligent multiplication table, design, construction, education, increased interest, students
Procedia PDF Downloads 6911128 The Evolution of the Human Brain from the Hind Brain to the Fore Brain: Dialectics from the African Perspective in Understanding Stunted Development in Science and Technology
Authors: Philemon Wokoma Iyagba, Obey Onenee Christie
Abstract:
From the hindbrain, which is responsible for motor activities, to the forebrain, responsible for processing information related to complex cognitive activities, the human brain has continued to evolve over the years. This evolution- has been progressive, leading to advancements in science and technology. However, the development of science and technology in Africa, where ancient civilization arguably began, has been retrogressive. Dialectics was done by dissecting different opinions on the reason behind the stunted development of science and technology in Africa. The researchers proposed that the inability to sustain the technological advancements made by early Africans is due to poor or lack of replicability of the African knowledge-based system, almost no or poor documentation of adopted procedures and the approval-seeking mentality that cheaply paved the way for westernization which also led to the adulteration of the African way of life and education without making room for incorporating her identity and proper alignment of her rich cultural heritage in education and her enormous achievements before and during the middle age. This article discussed conceptual issues, with its positions based on established facts, the discussion was based on relevant literature and recommendations were made accordingly.Keywords: forebrain, hindbrain, dialectics from African perspective, development in science and technology
Procedia PDF Downloads 7711127 Effectiveness of Visual Auditory Kinesthetic Tactile Technique on Reading Level among Dyslexic Children in Helikx Open School and Learning Centre, Salem
Authors: J. Mano Ranjini
Abstract:
Each and every child is special, born with a unique talent to explore this world. The word Dyslexia is derived from the Greek language in which “dys” meaning poor or inadequate and “lexis” meaning words or language. Dyslexia describes about a different kind of mind, which is often gifted and productive, that learns the concept differently. The main aim of the study is to bring the positive outcome of the reading level by examining the effectiveness of Visual Auditory Kinesthetic Tactile technique on Reading Level among Dyslexic Children at Helikx Open School and Learning Centre. A Quasi experimental one group pretest post test design was adopted for this study. The Reading Level was assessed by using the Schonell Graded Word Reading Test. Thirty subjects were drawn by using purposive sampling technique and the intervention Visual Auditory Kinesthetic Tactile technique was implemented to the Dyslexic Children for 30 consecutive days followed by the post Reading Level assessment revealed the improvement in the mean score value of reading level by 12%. Multi-sensory (VAKT) teaching uses all learning pathways in the brain (visual, auditory, kinesthetic-tactile) in order to enhance memory and learning and the ability in uplifting emotional, physical and societal dimensions. VAKT is an effective method to improve the reading skill of the Dyslexic Children that ensures the enormous significance of learning thereby influencing the wholesome of the child’s life.Keywords: visual auditory kinesthetic tactile technique, reading level, dyslexic children, Helikx Open School
Procedia PDF Downloads 60011126 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning
Authors: Suraj Gururaj, Sumantha Udupa U.
Abstract:
Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization
Procedia PDF Downloads 37611125 EFL Saudi Students' Use of Vocabulary via Twitter
Authors: A. Alshabeb
Abstract:
Vocabulary is one of the elements that links the four skills of reading, writing, speaking, and listening and is very critical in learning a foreign language. This study aims to determine how Saudi Arabian EFL students learn English vocabulary via Twitter. The study adopts a mixed sequential research design in collecting and analysing data. The results of the study provide several recommendations for vocabulary learning. Moreover, the study can help teachers to consider the possibilities of using Twitter further, and perhaps to develop new approaches to vocabulary teaching and to support students in their use of social media.Keywords: social media, twitter, vocabulary, web 2
Procedia PDF Downloads 41911124 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 25111123 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9411122 Cultivating Students’ Competences through Social Innovation Education
Authors: Ioanna Garefi, Irene Kalemaki
Abstract:
Education is not solely about preparing young people for the world of work but also about equipping them with competences that will enable them to become socially proactive, empowered, responsible, and engaged citizens who will collectively contribute to and benefit from an inclusive and sustainable future. Hence, progress assessment towards competence development is an ongoing process where continuous efforts are needed. This paper abstract presents the work of the H2020 NEMESIS project that aims to investigate, experiment and co-create together with schools a model for introducing and embedding social innovation education (SIE henceforth) in European primary and secondary schools. All in all, during the 2018-2019 academic year, 8 schools from 5 European countries involving 56 teachers, 1030 students, and 80 external stakeholders, experimented with different methodologies for embedding SIE in their contexts. This paper captures briefly the impact of these efforts towards the cultivation and progression of students’ social innovation (SI henceforth) competences. As part of the model, 14 SI competences, whose progress was evaluated, have been introduced falling under 3 interrelated categories: competences for identifying opportunities for social and collective value creation, competences for developing collaborations and building meaningful relations and competences for taking action both on an individual and collective level. Methodologically wise, the evaluation strategy employed was informed by a realist approach, enabling the researchers to go beyond synthesizing 'what happened' and towards understanding 'why it happened', delving into ‘what works, for whom and in what circumstances’. The reason for choosing such an approach was because it goes beyond attempting to answer the basic yes or no question of evaluation and focus on an ‘explanatory quest’ tracing the limits of when and where intervention is effective. A rich mix of sources of evidence have been employed, from focus groups with 80 people from the 5 EU countries to an online survey to 206 students, classroom observations, students’ narratives granting them with the opportunity to freely express their opinions, short stories letting students express their feelings through their imagination and also, drawings so that younger children can express their perception of reality. All these evidences offered insights on the impact of SIE on the development of students’ competences. Research findings showed that students progressed in all 14 SI competences through their involvement in the different activities. This positive progression is attributed to the model’s three core principles: 1) the student-centered approach, rendering students active and self-determined producers of their own learning, 2) the co-creation process fostering intergenerational interactions, empowering thus students by making their voices heard and valued and also, 3) the transformative social action whereby through their projects, students are able to witness the impact they are bringing about with their actions. Concluding, these initial findings, together with the forthcoming evaluation research to a pool of 30 schools around Europe, have the potential to raise the dynamics of the under-investigated field of SIE and encourage its embeddedness in more schools around Europe.Keywords: competence development, education, social innovation, students
Procedia PDF Downloads 9911121 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 18911120 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 16711119 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 14811118 Future of Nanotechnology in Digital MacDraw
Authors: Pejman Hosseinioun, Abolghasem Ghasempour, Elham Gholami, Hamed Sarbazi
Abstract:
Considering the development in global semiconductor technology, it is anticipated that gadgets such as diodes and resonant transistor tunnels (RTD/RTT), Single electron transistors (SET) and quantum cellular automata (QCA) will substitute CMOS (Complementary Metallic Oxide Semiconductor) gadgets in many applications. Unfortunately, these new technologies cannot disembark the common Boolean logic efficiently and are only appropriate for liminal logic. Therefor there is no doubt that with the development of these new gadgets it is necessary to find new MacDraw technologies which are compatible with them. Resonant transistor tunnels (RTD/RTT) and circuit MacDraw with enhanced computing abilities are candida for accumulating Nano criterion in the future. Quantum cellular automata (QCA) are also advent Nano technological gadgets for electrical circuits. Advantages of these gadgets such as higher speed, smaller dimensions, and lower consumption loss are of great consideration. QCA are basic gadgets in manufacturing gates, fuses and memories. Regarding the complex Nano criterion physical entity, circuit designers can focus on logical and constructional design to decrease complication in MacDraw. Moreover Single electron technology (SET) is another noteworthy gadget considered in Nano technology. This article is a survey in future of Nano technology in digital MacDraw.Keywords: nano technology, resonant transistor tunnels, quantum cellular automata, semiconductor
Procedia PDF Downloads 26511117 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies
Authors: Mark Andrew
Abstract:
Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.Keywords: forecasting, technology futures, uncertainty, complexity
Procedia PDF Downloads 11511116 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.Keywords: blockchain, digital multi-utility, end use, demand forecasting
Procedia PDF Downloads 17111115 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 11811114 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis
Authors: Kisik Song, Sungjoo Lee
Abstract:
With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.Keywords: patent infringement, new technology ideas, patent analysis, F-term
Procedia PDF Downloads 26911113 Explaining Motivation in Language Learning: A Framework for Evaluation and Research
Authors: Kim Bower
Abstract:
Evaluating and researching motivation in language learning is a complex and multi-faceted activity. Various models for investigating learner motivation have been proposed in the literature, but no one model supplies a complex and coherent model for investigating a range of motivational characteristics. Here, such a methodological framework, which includes exemplification of sources of evidence and potential methods of investigation, is proposed. The process model for the investigation of motivation within language learning settings proposed is based on a complex dynamic systems perspective that takes account of cognition and affects. It focuses on three overarching aspects of motivation: the learning environment, learner engagement and learner identities. Within these categories subsets are defined: the learning environment incorporates teacher, course and group specific aspects of motivation; learner engagement addresses the principal characteristics of learners' perceived value of activities, their attitudes towards language learning, their perceptions of their learning and engagement in learning tasks; and within learner identities, principal characteristics of self-concept and mastery of the language are explored. Exemplifications of potential sources of evidence in the model reflect the multiple influences within and between learner and environmental factors and the possible changes in both that may emerge over time. The model was initially developed as a framework for investigating different models of Content and Language Integrated Learning (CLIL) in contrasting contexts in secondary schools in England. The study, from which examples are drawn to exemplify the model, aimed to address the following three research questions: (1) in what ways does CLIL impact on learner motivation? (2) what are the main elements of CLIL that enhance motivation? and (3) to what extent might these be transferable to other contexts? This new model has been tried and tested in three locations in England and reported as case studies. Following an initial visit to each institution to discuss the qualitative research, instruments were developed according to the proposed model. A questionnaire was drawn up and completed by one group prior to a 3-day data collection visit to each institution, during which interviews were held with academic leaders, the head of the department, the CLIL teacher(s), and two learner focus groups of six-eight learners. Interviews were recorded and transcribed verbatim. 2-4 naturalistic observations of lessons were undertaken in each setting, as appropriate to the context, to provide colour and thereby a richer picture. Findings were subjected to an interpretive analysis by the themes derived from the process model and are reported elsewhere. The model proved to be an effective and coherent framework for planning the research, instrument design, data collection and interpretive analysis of data in these three contrasting settings, in which different models of language learning were in place. It is hoped that the proposed model, reported here together with exemplification and commentary, will enable teachers and researchers in a wide range of language learning contexts to investigate learner motivation in a systematic and in-depth manner.Keywords: investigate, language-learning, learner motivation model, dynamic systems perspective
Procedia PDF Downloads 26911112 A Review of Teaching and Learning of Mother Tongues in Nigerian Schools; Yoruba as a Case Study
Authors: Alonge Isaac Olusola
Abstract:
Taking a cue from countries such as China and Japan, there is no doubt that the teaching and learning of Mother Tongue ( MT) or Language of Immediate Environment (LIE) is a potential source of development in every country. The engine of economic, scientific, technological and political advancement would be more functional when the language of instruction for teaching and learning in schools is in the child’s mother tongue. The purpose of this paper therefore, is to delve into the genesis of the official recognition given to the teaching and learning of Nigerian languages at national level with special focus on Yoruba language. Yoruba language and other Nigerian languages were placed on a national pedestal by a Nigerian Educational Minister, Late Professor Babatunde Fafunwa, who served under the government of General Ibrahim Babangida (1985 – 1993). Through his laudable effort, the teaching and learning of Nigerian languages in schools all over the nation was incorporated officially in the national policy of education. Among all the Nigerian languages, Hausa, Igbo and Yoruba were given foremost priorities because of the large population of their speakers. Since the Fafunwa era, Yoruba language has become a national subject taught in primary, secondary and tertiary institutions in Nigeria. However, like every new policy, its implementation has suffered several forms of criticisms and impediments from governments, policy makers, curriculum developers, school administrators, teachers and learners. This paper has been able to arrive at certain findings through oral interviews, questionnaires and evaluation of pupils/students enrolment and performances in Yoruba language with special focus on the South-west and North central regions of Nigeria. From the research carried out, some factors have been found to be responsible for the successful implementation or otherwise of Yoruba language instruction policy in some schools, colleges and higher institutions in Nigeria. In conclusion, the paper made recommendations on how the National Policy of Education would be implemented to enhance the teaching and learning of Yoruba language in all Nigerian schools.Keywords: language of immediate environment, mother tongue, national policy of education, yoruba language
Procedia PDF Downloads 535