Search results for: industrial networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5977

Search results for: industrial networks

3397 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications

Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen

Abstract:

The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.

Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern

Procedia PDF Downloads 131
3396 The Principal-Agent Model with Moral Hazard in the Brazilian Innovation System: The Case of 'Lei do Bem'

Authors: Felippe Clemente, Evaldo Henrique da Silva

Abstract:

The need to adopt some type of industrial policy and innovation in Brazil is a recurring theme in the discussion of public interventions aimed at boosting economic growth. For many years, the country has adopted various policies to change its productive structure in order to increase the participation of sectors that would have the greatest potential to generate innovation and economic growth. Only in the 2000s, tax incentives as a policy to support industrial and technological innovation are being adopted in Brazil as a phenomenon associated with rates of productivity growth and economic development. In this context, in late 2004 and 2005, Brazil reformulated its institutional apparatus for innovation in order to approach the OECD conventions and the Frascati Manual. The Innovation Law (2004) and the 'Lei do Bem' (2005) reduced some institutional barriers to innovation, provided incentives for university-business cooperation, and modified access to tax incentives for innovation. Chapter III of the 'Lei do Bem' (no. 11,196/05) is currently the most comprehensive fiscal incentive to stimulate innovation. It complies with the requirements, which stipulates that the Union should encourage innovation in the company or industry by granting tax incentives. With its introduction, the bureaucratic procedure was simplified by not requiring pre-approval of projects or participation in bidding documents. However, preliminary analysis suggests that this instrument has not yet been able to stimulate the sector diversification of these investments in Brazil, since its benefits are mostly captured by sectors that already developed this activity, thus showing problems with moral hazard. It is necessary, then, to analyze the 'Lei do Bem' to know if there is indeed the need for some change, investigating what changes should be implanted in the Brazilian innovation policy. This work, therefore, shows itself as a first effort to analyze a current national problem, evaluating the effectiveness of the 'Lei do Bem' and suggesting public policies that help and direct the State to the elaboration of legislative laws capable of encouraging agents to follow what they describes. As a preliminary result, it is known that 130 firms used fiscal incentives for innovation in 2006, 320 in 2007 and 552 in 2008. Although this number is on the rise, it is still small, if it is considered that there are around 6 thousand firms that perform Research and Development (R&D) activities in Brazil. Moreover, another obstacle to the 'Lei do Bem' is the percentages of tax incentives provided to companies. These percentages reveal a significant sectoral correlation between R&D expenditures of large companies and R&D expenses of companies that accessed the 'Lei do Bem', reaching a correlation of 95.8% in 2008. With these results, it becomes relevant to investigate the law's ability to stimulate private investments in R&D.

Keywords: brazilian innovation system, moral hazard, R&D, Lei do Bem

Procedia PDF Downloads 337
3395 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.

Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks

Procedia PDF Downloads 401
3394 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 112
3393 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran

Authors: Azar Khodabakhshi, Elham Bolandnazar

Abstract:

Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.

Keywords: crop yield, energy, neuro-fuzzy method, strawberry

Procedia PDF Downloads 381
3392 Utilization of Bauxite Residue in Construction Materials: An Experimental Study

Authors: Ryan Masoodi, Hossein Rostami

Abstract:

Aluminum has been credited for the massive advancement of many industrial products, from aerospace and automotive to electronics and even household appliances. These developments have come with a cost, which is a toxic by-product. The rise of aluminum production has been accompanied by the rise of a waste material called Bauxite Residue or Red Mud. This toxic material has been proved to be harmful to the environment, yet, there is no proper way to dispose or recycle it. Herewith, a new experimental method to utilize this waste in the building material is proposed. A method to mix red mud, fly ash, and some other ingredients is explored to create a new construction material that can satisfy the minimum required strength for bricks. It concludes that it is possible to produce bricks with enough strength that is suitable for constriction in environments with low to moderate weather conditions.

Keywords: bauxite residue, brick, red mud, recycling

Procedia PDF Downloads 167
3391 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 164
3390 The New Economy: A Pedagogy for Vocational and Technical Education Programmes in Nigeria

Authors: Sunny Nwakanma

Abstract:

The emergence of the new economy has created a new world order for skill acquisition, economic activities and employment. It has dramatically changed the way we live, learn, work and even think about work. It has also created new opportunities as well as challenges and uncertainty. This paper will not only demystify the new economy and present its instrumentality in the acceleration of skill acquisition in technical education, but will also highlight industrial and occupational changes brought about by the synergy between information and communication technology revolution and the global economic system. It advocates among other things, the use of information and communication technology mediated instruction in technical education as it provides the flexibility to meet diverse learners’ need anytime and anywhere and facilitate skill acquisition.

Keywords: new economy, technical education, skill acquisition, information and communication technology

Procedia PDF Downloads 131
3389 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks

Authors: Walid Fantazi

Abstract:

The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.

Keywords: WSN, indexing data, SOA, RIA, geographic information system

Procedia PDF Downloads 254
3388 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 121
3387 Modelisation of a Full-Scale Closed Cement Grinding

Authors: D. Touil, L. Ouadah

Abstract:

An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.

Keywords: grinding circuit, clinker, cement, modeling, population balance, energy

Procedia PDF Downloads 526
3386 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency

Authors: Rania Alshikhe, Vinita Jindal

Abstract:

Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.

Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE

Procedia PDF Downloads 157
3385 Investigation of Operational Conditions for Treatment of Industrial Wastewater Contaminated with Pesticides Using Electro-Fenton Process

Authors: Mohamed Gar Alalm

Abstract:

This study aims to investigate various operating conditions that affect the performance of the electro-Fenton process for degradation of pesticides. Stainless steel electrodes were utilized in the electro-Fenton cell due to their relatively low cost. The favored conditions of current intensity, pH, iron loading, and pesticide concentration were deeply discussed. Complete removal of pesticide was attained at the optimum conditions. The degradation kinetics were described by pseudo- first-order pattern. In addition, a response surface model was developed to describe the performance of electro-Fenton process under different operational conditions. The model indicated that the coefficient of determination was (R² = 0.995).

Keywords: electro-Fenton, stainless steel, pesticide, wastewater

Procedia PDF Downloads 141
3384 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform

Authors: Ali Abdrhman M. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption

Procedia PDF Downloads 438
3383 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 154
3382 A Framework for Embedding Industry 4.0 in the UAE Defence Manufacturing Industry

Authors: Khalifa Al Baloushi, Hongwei Zhang, Terrence Perera

Abstract:

Over the last few decades, the government of the UAE has been taking actions to consolidate defense manufacturing entities with the view to build a coherent and modern defense manufacturing base. Whilst these actions have significantly improved the overall capabilities of defense manufacturing; further opportunities exist to radically transform the sector. A comprehensive literature review and data collected from a survey identified three potential areas of improvements, (a) integration of Industry 4.0 technologies and other smart technologies, (b) stronger engagement of small and Medium-sized defense manufacturing companies and (c) Enhancing the national defense policies by embedding best practices from other nations. This research paper presents the design and development of a conceptual framework for the UAE defense industrial ecosystem.

Keywords: industry 4.0, defense manufacturing, eco-systems, integration

Procedia PDF Downloads 207
3381 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 191
3380 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk

Procedia PDF Downloads 342
3379 Biofeedback-Driven Sound and Image Generation

Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez

Abstract:

BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.

Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology

Procedia PDF Downloads 72
3378 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result

Authors: Hemant Kumar Pathak

Abstract:

In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.

Keywords: fixed point, partial metric space, homotopy, physical sciences

Procedia PDF Downloads 441
3377 Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture

Authors: Karolina Porada

Abstract:

Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g.  air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling.  For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.

Keywords: brownfields, contemporary parks, landscape architecture, remediation

Procedia PDF Downloads 150
3376 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.

Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review

Procedia PDF Downloads 279
3375 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria

Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui

Abstract:

The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.

Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration

Procedia PDF Downloads 418
3374 Entrepreneurial Venture Creation through Anchor Event Activities: Pop-Up Stores as On-Site Arenas

Authors: Birgit A. A. Solem, Kristin Bentsen

Abstract:

Scholarly attention in entrepreneurship is currently directed towards understanding entrepreneurial venture creation as a process -the journey of new economic activities from nonexistence to existence often studied through flow- or network models. To complement existing research on entrepreneurial venture creation with more interactivity-based research of organized activities, this study examines two pop-up stores as anchor events involving on-site activities of fifteen participating entrepreneurs launching their new ventures. The pop-up stores were arranged in two middle-sized Norwegian cities and contained different brand stores that brought together actors of sub-networks and communities executing venture creation activities. The pop-up stores became on-site arenas for the entrepreneurs to create, maintain, and rejuvenate their networks, at the same time as becoming venues for temporal coordination of activities involving existing and potential customers in their venture creation. In this work, we apply a conceptual framework based on frequently addressed dilemmas within entrepreneurship theory (discovery/creation, causation/effectuation) to further shed light on the broad aspect of on-site anchor event activities and their venture creation outcomes. The dilemma-based concepts are applied as an analytic toolkit to pursue answers regarding the nature of anchor event activities typically found within entrepreneurial venture creation and how these anchor event activities affect entrepreneurial venture creation outcomes. Our study combines researcher participation with 200 hours of observation and twenty in-depth interviews. Data analysis followed established guidelines for hermeneutic analysis and was intimately intertwined with ongoing data collection. Data was coded and categorized in NVivo 12 software, and iterated several times as patterns were steadily developing. Our findings suggest that core anchor event activities typically found within entrepreneurial venture creation are; a concept- and product experimentation with visitors, arrangements to socialize (evening specials, auctions, and exhibitions), store-in-store concepts, arranged meeting places for peers and close connection with municipality and property owners. Further, this work points to four main entrepreneurial venture creation outcomes derived from the core anchor event activities; (1) venture attention, (2) venture idea-realization, (3) venture collaboration, and (4) venture extension. Our findings show that, depending on which anchor event activities are applied, the outcomes vary. Theoretically, this study offers two main implications. First, anchor event activities are both discovered and created, following the logic of causation, at the same time as being experimental, based on “learning by doing” principles of effectuation during the execution. Second, our research enriches prior studies on venture creation as a process. In this work, entrepreneurial venture creation activities and outcomes are understood through pop-up stores as on-site anchor event arenas, particularly suitable for interactivity-based research requested by the entrepreneurship field. This study also reveals important managerial implications, such as that entrepreneurs should allow themselves to find creative physical venture creation arenas (e.g., pop-up stores, showrooms), as well as collaborate with partners when discovering and creating concepts and activities based on new ideas. In this way, they allow themselves to both strategically plan for- and continually experiment with their venture.

Keywords: anchor event, interactivity-based research, pop-up store, entrepreneurial venture creation

Procedia PDF Downloads 91
3373 Assessing Firm Readiness to Implement Cloud Computing: Toward a Comprehensive Model

Authors: Seyed Mohammadbagher Jafari, Elahe Mahdizadeh, Masomeh Ghahremani

Abstract:

Nowadays almost all organizations depend on information systems to run their businesses. Investment on information systems and their maintenance to keep them always in best situation to support firm business is one of the main issues for every organization. The new concept of cloud computing was developed as a technical and economic model to address this issue. In cloud computing the computing resources, including networks, applications, hardwares and services are configured as needed and are available at the moment of request. However, migration to cloud is not an easy task and there are many issues that should be taken into account. This study tries to provide a comprehensive model to assess a firm readiness to implement cloud computing. By conducting a systematic literature review, four dimensions of readiness were extracted which include technological, human, organizational and environmental dimensions. Every dimension has various criteria that have been discussed in details. This model provides a framework for cloud computing readiness assessment. Organizations that intend to migrate to cloud can use this model as a tool to assess their firm readiness before making any decision on cloud implementation.

Keywords: cloud computing, human readiness, organizational readiness, readiness assessment model

Procedia PDF Downloads 396
3372 Measuring of the Volume Ratio of Two Immiscible Liquids Using Electrical Impedance Tomography

Authors: Jiri Primas, Michal Malik, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

Authors of this paper discuss the measuring of volume ratio of two immiscible liquids in the homogenous mixture using the industrial Electrical Impedance Tomography (EIT) system ITS p2+. In the first part of the paper, the principle of EIT and the basic theory of conductivity of mixture of two components are stated. In the next part, the experiment with water and olive oil mixed with Rushton turbine is described, and the measured results are used to verify the theory. In the conclusion, the results are discussed in detail, and the accuracy of the measuring method and its advantages are also mentioned.

Keywords: conductivity, electrical impedance tomography, homogenous mixture, mixing process

Procedia PDF Downloads 403
3371 Named Entity Recognition System for Tigrinya Language

Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager

Abstract:

The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.

Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF

Procedia PDF Downloads 131
3370 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies

Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon

Abstract:

In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learning

Keywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps

Procedia PDF Downloads 127
3369 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: causticizing, lime, prediction, process

Procedia PDF Downloads 354
3368 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 178