Search results for: healthcare data
23379 An Application of Remote Sensing for Modeling Local Warming Trend
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 33923378 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges
Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch
Abstract:
Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.Keywords: big data interpretation, datathon, systems toxicology, verification
Procedia PDF Downloads 27823377 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 26323376 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services
Authors: Giada Feletti, Daniela Tedesco, Paolo Trucco
Abstract:
The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning the indicators currently used for the performance measurement of EMS systems. From this literature analysis, it emerged that current studies focus on two distinct perspectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). The perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal focuses on the entire healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid to the dependency of decisions that in current EMS management models tend to be neglected or underestimated. In particular, the integration of the two processes enables the evaluation of the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in the extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating the ones firstly not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draws us to exclude additional indicators due to the unavailability of data required for their computation. The final dashboard, which was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness of EDs accessibility in real-time. By associating each KPI to the EMS phase it refers to, it was also possible to design a well-balanced dashboard covering both efficiency and effective performance of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient’s care are covered by traditional KPIs compared to the subsequent phases taking place in the hospital ED. This could be taken into consideration for the potential future development of the dashboard. Moreover, the research could proceed by building a multi-layer dashboard composed of the first level with a minimal set of KPIs to measure the basic performance of the EMS system at an aggregate level and further levels with KPIs that can bring additional and more detailed information.Keywords: dashboard, decision support, emergency medical services, key performance indicators
Procedia PDF Downloads 11323375 Wrong Site Surgery Should Not Occur In This Day And Age!
Authors: C. Kuoh, C. Lucas, T. Lopes, I. Mechie, J. Yoong, W. Yoong
Abstract:
For all surgeons, there is one preventable but still highly occurring complication – wrong site surgeries. They can have potentially catastrophic, irreversible, or even fatal consequences on patients. With the exponential development of microsurgery and the use of advanced technological tools, the consequences of operating on the wrong side, anatomical part, or even person is seen as the most visible and destructive of all surgical errors and perhaps the error that is dreaded by most clinicians as it threatens their licenses and arouses feelings of guilt. Despite the implementation of the WHO surgical safety checklist more than a decade ago, the incidence of wrong-site surgeries remains relatively high, leading to tremendous physical and psychological repercussions for the clinicians involved, as well as a financial burden for the healthcare institution. In this presentation, the authors explore various factors which can lead to wrong site surgery – a combination of environmental and human factors and evaluate their impact amongst patients, practitioners, their families, and the medical industry. Major contributing factors to these “never events” include deviations from checklists, excessive workload, and poor communication. Two real-life cases are discussed, and systems that can be implemented to prevent these errors are highlighted alongside lessons learnt from other industries. The authors suggest that reinforcing speaking-up, implementing medical professional trainings, and higher patient’s involvements can potentially improve safety in surgeries and electrosurgeries.Keywords: wrong side surgery, never events, checklist, workload, communication
Procedia PDF Downloads 18423374 On Estimating the Low Income Proportion with Several Auxiliary Variables
Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández
Abstract:
Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.Keywords: inclusion probability, poverty, poverty line, survey sampling
Procedia PDF Downloads 45823373 TessPy – Spatial Tessellation Made Easy
Authors: Jonas Hamann, Siavash Saki, Tobias Hagen
Abstract:
Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies
Procedia PDF Downloads 12823372 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies
Authors: Dmitry V. Fomichev, Vladimir V. Solonin
Abstract:
This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics
Procedia PDF Downloads 38223371 Analysis of Lead Time Delays in Supply Chain: A Case Study
Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry
Abstract:
Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis
Procedia PDF Downloads 73123370 A Unified Approach for Digital Forensics Analysis
Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles
Abstract:
Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool
Procedia PDF Downloads 19623369 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country
Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni
Abstract:
Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country
Procedia PDF Downloads 7023368 The Shape of the Sculptor: Exploring Psychologist’s Perceptions of a Model of Parenting Ability to Guide Intervention in Child Custody Evaluations in South Africa
Authors: Anthony R. Townsend, Robyn L. Fasser
Abstract:
This research project provides an interpretative phenomenological analysis of a proposed conceptual model of parenting ability that has been designed to offer recommendations to guide intervention in child custody evaluations in South Africa. A recent review of the literature on child custody evaluations reveals that while there have been significant and valuable shifts in the capacity of the legal system aided by mental health professionals in understanding children and family dynamics, there remains a conceptual gap regarding the nature of parenting ability. With a view to addressing this paucity of a theoretical basis for considering parenting ability, this research project reviews a dimensional model for the assessment of parenting ability by conceiving parenting ability as a combination of good parenting and parental fitness. This model serves as a conceptual framework to guide child-custody evaluation and refine intervention in such cases to better meet the best interests of the child in a manner that bridges the professional gap between parties, legal entities, and mental health professionals. Using a model of good parenting as a point of theoretical departure, this model incorporates both intra-psychic and interpersonal attributes and behaviours of parents to form an impression of parenting ability and identify areas for potential enhancement. This research, therefore, hopes to achieve the following: (1) to provide nuanced descriptions of parents’ parenting ability; (2) to describe parents’ parenting potential; (3) to provide a parenting assessment tool for investigators in forensic family matters that will enable more useful recommendations and interventions; (4) to develop a language of consensus for investigators, attorneys, judges and parents, in forensic family matters, as to what comprises parenting ability and how this can be assessed; and (5) that all of the aforementioned will serve to advance the best interests of the children involved in such litigious matters. The evaluative promise and post-assessment prospects of this model are illustrated through three interlinking data sets: (1) the results of interviews with South African psychologists about the model, (2) retrospective analysis of care and contact evaluation reports using the model to determine if different conclusions or more specific recommendations are generated with its use and (3) the results of an interview with a psychologist who piloted this model by using it in care and contact evaluation.Keywords: alienation, attachment, best interests of the child, care and contact evaluation, children’s act (38 of 2005), child custody evaluation, civil forensics, gatekeeping, good parenting, good-enough parenting, health professions council of South Africa, family law, forensic mental healthcare practitioners, parental fitness, parenting ability, parent management training, parenting plan, problem-determined system, psychotherapy, support of other child-parent relationship, voice of the child
Procedia PDF Downloads 11523367 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis
Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare
Abstract:
The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test
Procedia PDF Downloads 40223366 Preventing Discharge to No Fixed Address-Youth (NFA-Y)
Authors: Cheryl Forchuk, Sandra Fisman, Steve Cordes, Dan Catunto, Katherine Krakowski, Melissa Jeffrey, John D’Oria
Abstract:
The discharge of youth aged 16-25 from hospital into homelessness is a prevalent issue despite research indicating social, safety, health and economic detriments on both the individual and community. Lack of stable housing for youth discharged into homelessness results in long-term consequences, including exacerbation of health problems and costly health care service use and hospital readmission. People experiencing homelessness are four times more likely to be readmitted within one month of discharge and hospitals must spend $2,559 more per client. Finding safe housing for these individuals is imperative to their recovery and transition back to the community. People discharged from hospital to homelessness experience challenges, including poor health outcomes and increased hospital readmissions. Youth are the fastest-growing subgroup of people experiencing homelessness in Canada. The needs of youth are unique and include supports related to education, employment opportunities, and age-related service barriers. This study aims to identify the needs of youth at risk of homelessness by evaluating the efficacy of the “Preventing Discharge to No Fixed Address – Youth” (NFA-Y) program, which aims to prevent youth from being discharged from hospital into homelessness. The program connects youth aged 16-25 who are inpatients at London Health Sciences Centre and St. Joseph’s Health Care London to housing and financial support. Supports are offered through collaboration with community partners: Youth Opportunities Unlimited, Canadian Mental Health Association Elgin Middlesex, City of London Coordinated Access, Ontario Works, and Salvation Army’s Housing Stability Bank. This study was reviewed and approved by Western University’s Research Ethics Board. A series of interviews are being conducted with approximately ninety-three youth participants at three time points: baseline (pre-discharge), six, and twelve months post-discharge. Focus groups with participants, health care providers, and community partners are being conducted at three-time points. In addition, administrative data from service providers will be collected and analyzed. Since homelessness has a detrimental effect on recovery, client and community safety, and healthcare expenditure, locating safe housing for psychiatric patients has had a positive impact on treatment, rehabilitation, and the system as a whole. If successful, the findings of this project will offer safe policy alternatives for the prevention of homelessness for at-risk youth, help set them up for success in their future years, and mitigate the rise of the homeless youth population in Canada.Keywords: youth homelessness, no-fixed address, mental health, homelessness prevention, hospital discharge
Procedia PDF Downloads 10423365 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 11823364 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 6123363 Corporate Governance and Share Prices: Firm Level Review in Turkey
Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara
Abstract:
This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.Keywords: corporate governance, stock price, performance, panel data analysis
Procedia PDF Downloads 39323362 Influential Health Care System Rankings Can Conceal Maximal Inequities: A Simulation Study
Authors: Samuel Reisman
Abstract:
Background: Comparative rankings are increasingly used to evaluate health care systems. These rankings combine discrete attribute rankings into a composite overall ranking. Health care equity is a component of overall rankings, but excelling in other categories can counterbalance low inequity grades. Highly ranked inequitable health care would commend systems that disregard human rights. We simulated the ranking of a maximally inequitable health care system using a published, influential ranking methodology. Methods: We used The Commonwealth Fund’s ranking of eleven health care systems to simulate the rank of a maximally inequitable system. Eighty performance indicators were simulated, assuming maximal ineptitude in equity benchmarks. Maximal rankings in all non-equity subcategories were assumed. Subsequent stepwise simulations lowered all non-equity rank positions by one. Results: The maximally non-equitable health care system ranked first overall. Three subsequent stepwise simulations, lowering non-equity rankings by one, each resulted in an overall ranking within the top three. Discussion: Our results demonstrate that grossly inequitable health care systems can rank highly in comparative health care system rankings. These findings challenge the validity of ranking methodologies that subsume equity under broader benchmarks. We advocate limiting maximum overall rankings of health care systems to their individual equity rankings. Such limits are logical given the insignificance of health care system improvements to those lacking adequate health care.Keywords: global health, health equity, healthcare systems, international health
Procedia PDF Downloads 40023361 Design of a Computer Vision Based Exercise Video Game for Senior Citizens
Abstract:
There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.Keywords: about computer vision, video games, gerontology technology, caregiving
Procedia PDF Downloads 8123360 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia
Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda
Abstract:
This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers
Procedia PDF Downloads 17623359 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method
Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary
Abstract:
Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method
Procedia PDF Downloads 43023358 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers
Authors: Clare Cunningham
Abstract:
Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.Keywords: academic writing, students, undergraduates, writing retreat
Procedia PDF Downloads 19923357 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan
Authors: Mohd Asrul Affedi, Nyi Nyi Naing
Abstract:
Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS
Procedia PDF Downloads 46323356 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 7623355 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.Keywords: temporal graph network, anomaly detection, cyber security, IDS
Procedia PDF Downloads 10323354 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier
Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho
Abstract:
Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.Keywords: classifier algorithm, diabetes, diagnostic model, machine learning
Procedia PDF Downloads 33623353 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 11523352 A Critical Analysis on Gaps Associated with Culture Policy Milieu Governing Traditional Male Circumcision in the Eastern Cape, South Africa
Authors: Thanduxolo Nomngcoyiya, Simon M. Kang’ethe
Abstract:
The paper aimed to critically analyse gaps pertaining to the cultural policy environments governing traditional male circumcision in the Eastern Cape as exemplified by an empirical case study. The original study which this paper is derived from utilized qualitative paradigm; and encompassed 28 participants. It used in-depth one-on-one interviews complemented by focus group discussions and key informants as a method of data collection. It also adopted interview guide as a data collection instrument. The original study was cross-sectional in nature, and the data was audio recorded and transcribed later during the data analysis and coding process. The study data analysis was content thematic analysis and identified the following key major findings on the culture of male circumcision policy: Lack of clarity on culture of male circumcision policy operations; Myths surrounding procedures on culture of male circumcision; Divergent views on cultural policies between government and male circumcision custodians; Unclear cultural policies on selection criteria of practitioners; and Lack of policy enforcement and implementation on transgressors of culture of male circumcision. It recommended: a stringent selection criteria of practitioners; a need to carry out death-free male circumcision; a need for male circumcision stakeholders to work with other culture and tradition-friendly stakeholders.Keywords: human rights, policy enforcement, traditional male circumcision, traditional surgeons and nurses
Procedia PDF Downloads 29723351 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data
Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple
Abstract:
In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network
Procedia PDF Downloads 13923350 Modeling Local Warming Trend: An Application of Remote Sensing Technique
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 346