Search results for: angular distribution for Cr deposition rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13405

Search results for: angular distribution for Cr deposition rate

10825 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 254
10824 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach

Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong

Abstract:

Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.

Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach

Procedia PDF Downloads 396
10823 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 529
10822 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment

Authors: Bezhan Ghvaberidze

Abstract:

A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.

Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory

Procedia PDF Downloads 119
10821 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 118
10820 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 32
10819 Clinical Characteristics of Retinal Detachment Associated with Atopic Dermatitis

Authors: Hyoung Seok Kim

Abstract:

Purpose: To evaluate the clinical characteristics and surgical outcomes of retinal detachment associated with atopic dermatitis. Methods: A retrospective investigation of clinical notes of 37 patients with retinal detachment associated with atopic dermatitis was conducted from January 2019 to December 2023. Initial visual acuity, medical history, type of retinal detachment, number of tears, types of treatment, success rate of treatment, and presence of cataract were investigated. To evaluate the relationship with cataract, the patients were classified into three groups according to lens status: group A (eyes with clear lens), group B (eyes with cataract), and group C (pseudophakic eyes). Results: Of the 37 patients, 29 were male and 8 were female; 10 patients had bilateral retinal detachment (27.0%). The retinal breaks were often located temporally (89.4%), with only 5 cases (10.6%) involving nasal-side retinal breaks. No significant differ ences were noted in the ratio of males to females, age distribution, visual acuity before and after treatments, axial length, and lo cation of retina breaks among the three groups. After primary surgery, retinal detachment recurred in 12 patients (14 eyes), 5 of whom were initially diagnosed with bilateral retinal detachment. In addition, 12 of 14 eyes underwent a second operation, in which detachment recurred in 3 eyes. Conclusions: Incidence of bilateral retinal detachment was high in patients with atopic dermatitis, and the retinal breaks were of ten found on the temporal side. Retinal re-detachment was statistically high in patients with cataract or pseudophakic eyes com pared to patients with clear lens (p = 0.024).

Keywords: retinal detachment, atopic dermatitis, cataract, retina surgery

Procedia PDF Downloads 22
10818 Analysis on the Effectiveness of the "Three-Exemption" Policy Aimed at Promoting Unpaid Blood Donation in Zhejiang

Authors: Ni Tang, Jinping Zhang

Abstract:

An effective and sustainable volunteer team is needed to create a more available blood supply system. In order to promote the sustainable development of blood donation in Zhejiang Province, China, a “three-exemption” policy was proposed in 2014: blood donors who received the National Award for unpaid blood donation may government-invested and funded parks, scenic spots and other places for free, visit non-profit medical institutions for free outpatient fees, and be exempted from urban public transportation fees. As the policy has been in place for seven years, this study evaluated the effectiveness of the policy by comparing the increasing rate of blood donation in Hangzhou (capital city of Zhejiang) before and after the policy using the intermittent time series analysis. The blood donation in Anhui, a Province near Zhejiang, was also compared as a negative control. Blood donation data from 2012 to 2018 were obtained from the donation center's official websites. The increasing rate of blood donation volume since 2012 in Hangzhou is 34.37 units/month, and after 2014, the increasing rate additionally increases 71.69 (p=0.1442), which indicating a statistically non-significant change after the policy. While as a negative control, in Anhui, the increasing rate of blood donation volume since 2012 is -163.3 unit/month, and the increasing rate additionally increases 167.2 (p=5.63e-07) after 2014. The result shows that the three-exemption policy had a certain level of impact on encouraging volunteers to donate blood, but the effect was not substantial. One possible reason for the ineffectiveness of the policy might be a lack of public awareness of the policy. On the other hand, this policy mainly waived unnecessary life expenses, such as fares and scenic entrance fees, and requires a certain number of blood donations, registration procedures, and blood donation certificates. Perhaps, reducing life-related expenses such as oil, water and electricity, could better attract people to participate in blood donation. This current study on the three-exemption policy provides a new direction for promoting people's blood donation. Incentive policies may require greater publicity and incentives. In order to better ensure the operation of the blood donation system, other policies, especially incentive policies, should be further explored.

Keywords: blood donation, policy, Zhejiang, unpaid blood donation, three-exemption policy

Procedia PDF Downloads 210
10817 The Application of to Optimize Pellet Quality in Broiler Feeds

Authors: Reza Vakili

Abstract:

The aim of this experiment was to optimize the effect of moisture, the production rate, grain particle size and steam conditioning temperature on pellet quality in broiler feed using Taguchi method and a 43 fractional factorial arrangement was conducted. Production rate, steam conditioning temperatures, particle sizes and moisture content were performed. During the production process, sampling was done, and then pellet durability index (PDI) and hardness evaluated in broiler feed grower and finisher. There was a significant effect of processing parameters on PDI and hardness. Based on the results of this experiment Taguchi method can be used to find the best combination of factors for optimal pellet quality.

Keywords: broiler, feed physical quality, hardness, processing parameters, PDI

Procedia PDF Downloads 187
10816 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry

Authors: Balraju Vadlakonda, Narasimha Mangadoddy

Abstract:

The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.

Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy

Procedia PDF Downloads 510
10815 Microjetting from a Grooved Metal Surface under Decaying Shocks

Authors: Jian-Li Shao

Abstract:

Using Molecular Dynamic (MD) simulations, we simulated the microjet from the metal surface under decaying shock loading. The microjetting processes under release melting conditions are presented in detail, and some properties on the microjet mass and velocity are revealed. The phased increase of microjet mass with shock pressure is found. For all cases, the ratio of the maximal jetting velocity to the surface velocity approximately keeps a constant for liquid state. In addition, the temperature of the microjet can be always above the melting point. When introducing slow decaying profiles, the microjet mass begins to increase with the decay rate, which is dominated by the deformation of the bubble during pull-back. When the decay rate becomes fast enough, the microspall occurs as expected, meanwhile, the microjet appears to reduce because of the shock energy reduction.

Keywords: microjetting, shock, metal, molecular dynamics

Procedia PDF Downloads 208
10814 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 85
10813 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels

Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila

Abstract:

Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.

Keywords: alternative fuels, cement clinker, microstructure, SEM

Procedia PDF Downloads 365
10812 Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System

Authors: Jui-Pui Hung, Yu-Sheng Lai, Tzuo-Liang Luo, Kung-Da Wu, Yun-Ji Zhan

Abstract:

This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: dynamic stiffness, spindle-tool holder, interface stiffness, drawbar force

Procedia PDF Downloads 398
10811 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 43
10810 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 311
10809 Evaluating Viability of Solar Tubewell Irrigation Technology

Authors: Junaid N. Chauhdary, Bernard A. Engel, Allah Bakhsh

Abstract:

Solar powered tubewells can be a reliable and affordable source of supplying irrigation water compared with electric or diesel operated tubewells due to frequent load shedding and soaring energy prices. A study was conducted on a solar tubewell installed at the Water Management Research Center (WMRC), University of Agriculture, Faisalabad to investigate the viability of a solar powered tubewell in terms of discharge and benefit cost ratio. The tubewell discharge was 50 m3hr-1 with a total dynamic head of 30 m. The depth of bore was 31 m (14 m blind + 17 m screen) with a casing diameter of 15.2 cm (6 inches). A 3-stage submersible pump of 10.2 cm (4 inch) diameter was lowered in the casing to a depth of 22 m. The pump was powered from 21 solar panels of 200 W capacity each. The tubewell peak discharge was observed as 6 and 7 hr day-1 in winter and summer, respectively. The breakeven analysis of the solar tubewell showed that the payback period of the solar tubewell was 1.5 years of its 10 year usable life with an IRR (internal rate of return) of 69 %. The BCR (benefit cost ratio) of the solar tubewell at 2, 4, 6, and 8 percent discount rate were 3.75, 3.45, 3.19 and 2.96, respectively. The NPV (net present value) of the solar tubewell at 2, 4, 6, and 8 % discount rates were 1.89, 1.65, 1.45 and 1.27 million rupees, respectively. These results indicated that the solar powered tubewells are a viable option as well as environmentally friendly and can be adopted by the farmers due to their affordable payback period.

Keywords: benefit cost ratio, internal rate of return (IRR), net present value (NPV), solar tubewell

Procedia PDF Downloads 208
10808 Unlocking New Room of Production in Brown Field; ‎Integration of Geological Data Conditioned 3D Reservoir ‎Modelling of Lower Senonian Matulla Formation, RAS ‎Budran Field, East Central Gulf of Suez, Egypt

Authors: Nader Mohamed

Abstract:

The Late Cretaceous deposits are well developed through-out Egypt. This is due to a ‎transgression phase associated with the subsidence caused by the neo-Tethyan rift event that ‎took place across the northern margin of Africa, resulting in a period of dominantly marine ‎deposits in the Gulf of Suez. The Late Cretaceous Nezzazat Group represents the Cenomanian, ‎Turonian and clastic sediments of the Lower Senonian. The Nezzazat Group has been divided ‎into four formations namely, from base to top, the Raha Formation, the Abu Qada Formation, ‎the Wata Formation and the Matulla Formation. The Cenomanian Raha and the Lower Senonian ‎Matulla formations are the most important clastic sequence in the Nezzazat Group because they ‎provide the highest net reservoir thickness and the highest net/gross ratio. This study emphasis ‎on Matulla formation located in the eastern part of the Gulf of Suez. The three stratigraphic ‎surface sections (Wadi Sudr, Wadi Matulla and Gabal Nezzazat) which represent the exposed ‎Coniacian-Santonian sediments in Sinai are used for correlating Matulla sediments of Ras ‎Budran field. Cutting description, petrographic examination, log behaviors, biostratigraphy with ‎outcrops are used to identify the reservoir characteristics, lithology, facies environment logs and ‎subdivide the Matulla formation into three units. The lower unit is believed to be the main ‎reservoir where it consists mainly of sands with shale and sandy carbonates, while the other ‎units are mainly carbonate with some streaks of shale and sand. Reservoir modeling is an ‎effective technique that assists in reservoir management as decisions concerning development ‎and depletion of hydrocarbon reserves, So It was essential to model the Matulla reservoir as ‎accurately as possible in order to better evaluate, calculate the reserves and to determine the ‎most effective way of recovering as much of the petroleum economically as possible. All ‎available data on Matulla formation are used to build the reservoir structure model, lithofacies, ‎porosity, permeability and water saturation models which are the main parameters that describe ‎the reservoirs and provide information on effective evaluation of the need to develop the oil ‎potentiality of the reservoir. This study has shown the effectiveness of; 1) the integration of ‎geological data to evaluate and subdivide Matulla formation into three units. 2) Lithology and ‎facies environment interpretation which helped in defining the nature of deposition of Matulla ‎formation. 3) The 3D reservoir modeling technology as a tool for adequate understanding of the ‎spatial distribution of property and in addition evaluating the unlocked new reservoir areas of ‎Matulla formation which have to be drilled to investigate and exploit the un-drained oil. 4) This ‎study led to adding a new room of production and additional reserves to Ras Budran field. ‎

Keywords: geology, oil and gas, geoscience, sequence stratigraphy

Procedia PDF Downloads 106
10807 Productivity and Structural Design of Manufacturing Systems

Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva

Abstract:

Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.

Keywords: productivity, structure, manufacturing systems, structural design

Procedia PDF Downloads 585
10806 Aeration of Fish Pond Aquaculture Using Wind Power

Authors: Fatima Hassan Mohamed Ahmed

Abstract:

This study discusses the possibility techniques of using wind energy to operate the aeration devices which are used in the intensive fish farm for Nile Tilapia. The main objective is to show at what expense this renewable energy source can increase the production. The study was done for the oxygen consumption by 1 kg fishes of tilapia put in 1 m3. The theoretical study shows that the fishes consume around 0.5 gO2/hour when using paddle wheels with average oxygen transfer rate 2.6 kgO2/kW.h comparing this with dissolved oxygen consumed by fishes it was found that 1 kW will aerate 5200 m3 and the same power will aerate 1800 m3 when using air diffuser system with average oxygen transfer rate 0.9 kgO2/kW.h, this power can be supplied by the wind turbine with dimension with a tower 6 m high and diameter 2.7 m.

Keywords: aeration, fish pond, wind, power

Procedia PDF Downloads 638
10805 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The RMSE between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition

Procedia PDF Downloads 104
10804 Computational Fluid Dynamics of a Bubbling Fluidized Bed in Wood Pellets

Authors: Opeyemi Fadipe, Seong Lee, Guangming Chen, Steve Efe

Abstract:

In comparison to conventional combustion technologies, fluidized bed combustion has several advantages, such as superior heat transfer characteristics due to homogeneous particle mixing, lower temperature needs, nearly isothermal process conditions, and the ability to operate continuously. Computational fluid dynamics (CFD) can help anticipate the intricate combustion process and the hydrodynamics of a fluidized bed thoroughly by using CFD techniques. Bubbling Fluidized bed was model using the Eulerian-Eulerian model, including the kinetic theory of the flow. The model was validated by comparing it with other simulation of the fluidized bed. The effects of operational gas velocity, volume fraction, and feed rate were also investigated numerically. A higher gas velocity and feed rate cause an increase in fluidization of the bed.

Keywords: fluidized bed, operational gas velocity, volume fraction, computational fluid dynamics

Procedia PDF Downloads 83
10803 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 177
10802 Development of Agomelatine Loaded Proliposomal Powders for Improved Intestinal Permeation: Effect of Surface Charge

Authors: Rajasekhar Reddy Poonuru, Anusha Parnem

Abstract:

Purpose: To formulate proliposome powder of agomelatine, an antipsychotic drug, and to evaluate physicochemical, in vitro characters and effect of surface charge on ex vivo intestinal permeation. Methods: Film deposition technique was employed to develop proliposomal powders of agomelatin with varying molar ratios of lipid Hydro Soy PC L-α-phosphatidylcholine (HSPC) and cholesterol with fixed sum of drug. With the aim to derive free flowing and stable proliposome powder, fluid retention potential of various carriers was examined. Liposome formation and number of vesicles formed for per mm3 up on hydration, vesicle size, and entrapment efficiency was assessed to deduce an optimized formulation. Sodium cholate added to optimized formulation to induce surface charge on formed vesicles. Solid-state characterization (FTIR, DSC, and XRD) was performed with the intention to assess native crystalline and chemical behavior of drug. The in vitro dissolution test of optimized formulation along with pure drug was evaluated to estimate dissolution efficiency (DE) and relative dissolution rate (RDR). Effective permeability co-efficient (Peff(rat)) in rat and enhancement ratio (ER) of drug from formulation and pure drug dispersion were calculated from ex vivo permeation studies in rat ileum. Results: Proliposomal powder formulated with equimolar ratio of HSPC and cholesterol ensued in higher no. of vesicles (3.95) with 90% drug entrapment up on hydration. Neusilin UFL2 was elected as carrier because of its high fluid retention potential (4.5) and good flow properties. Proliposome powder exhibited augmentation in DE (60.3 ±3.34) and RDR (21.2±01.02) of agomelation over pure drug. Solid state characterization studies demonstrated the transformation of native crystalline form of drug to amorphous and/or molecular state, which was in correlation with results obtained from in vitro dissolution test. The elevated Peff(rat) of 46.5×10-4 cm/sec and ER of 2.65 of drug from charge induced proliposome formulation with respect to pure drug dispersion was assessed from ex vivo intestinal permeation studies executed in ileum of wistar rats. Conclusion: Improved physicochemical characters and ex vivo intestinal permeation of drug from charge induced proliposome powder with Neusilin UFL2 unravels the potentiality of this system in enhancing oral delivery of agomelatin.

Keywords: agomelatin, proliposome, sodium cholate, neusilin

Procedia PDF Downloads 139
10801 Mechanized Harvest Impact on Reproductive Performance of Ewes of Some Villages

Authors: Jaber Jafarzadeh

Abstract:

The two nodes of treatment for the study of indirect effects on the reproductive performance of sheep farming machines used. During the harvest period of 30 days (from 20th July to 20th September) and coincides with the period, sheep are also harvested the following day why the fields and in the second group were 30 ewes and were kept in farms that harvest was done by machinery during harvest about 15-20 days (from 20th July to early September), respectively. -Ya Term mating season is better than the ram up Astafadh Knym- of early September, no matter the point of beginning. Based on the data obtained, it was found that the rate of return to oestrus in the first group is lower than the second group and the rate of lambing in the first group was significantly (0.05> P) is greater than the second group (138% vs. 97%). Estrus synchronization in the first group and the second group was better than that.

Keywords: mechanized harvest, twin birth, mating season, reproductive performance of ewes

Procedia PDF Downloads 598
10800 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
10799 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals

Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady

Abstract:

Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.

Keywords: core stability, isokinetic, trunk proprioception, biomechanics

Procedia PDF Downloads 475
10798 Analysis of Fuel Adulteration Consequences in Bangladesh

Authors: Mahadehe Hassan

Abstract:

In most countries manufacturing, trading and distribution of gasoline and diesel fuels belongs to the most important sectors of national economy. For Bangladesh, a robust, well-functioning, secure and smartly managed national fuel distribution chain is an essential precondition for achieving Government top priorities in development and modernization of transportation infrastructure, protection of national environment and population health as well as, very importantly, securing due tax revenue for the State Budget. Bangladesh is a developing country with complex fuel supply network, high fuel taxes incidence and – till now - limited possibilities in application of modern, automated technologies for Government national fuel market control. Such environment allows dishonest physical and legal persons and organized criminals to build and profit from illegal fuel distribution schemes and fuel illicit trade. As a result, the market transparency and the country attractiveness for foreign investments, law-abiding economic operators, national consumers, State Budget and the Government ability to finance development projects, and the country at large suffer significantly. Research shows that over 50% of retail petrol stations in major agglomerations of Bangladesh sell adulterated fuels and/or cheat customers on the real volume of the fuel pumped into their vehicles. Other forms of detected fuel illicit trade practices include misdeclaration of fuel quantitative and qualitative parameters during internal transit and selling of non-declared and smuggled fuels. The aim of the study is to recommend the implementation of a National Fuel Distribution Integrity Program (FDIP) in Bangladesh to address and resolve fuel adulteration and illicit trade problems. The program should be customized according to the specific needs of the country and implemented in partnership with providers of advanced technologies. FDIP should enable and further enhance capacity of respective Bangladesh Government authorities in identification and elimination of all forms of fuel illicit trade swiftly and resolutely. FDIP high-technology, IT and automation systems and secure infrastructures should be aimed at the following areas (1) fuel adulteration, misdeclaration and non-declaration; (2) fuel quality and; (3) fuel volume manipulation at retail level. Furthermore, overall concept of FDIP delivery and its interaction with the reporting and management systems used by the Government shall be aligned with and support objectives of the Vision 2041 and Smart Bangladesh Government programs.

Keywords: fuel adulteration, octane, kerosene, diesel, petrol, pollution, carbon emissions

Procedia PDF Downloads 75
10797 Microstructural Evidences for Exhaustion Theory of Low Temperature Creep in Martensitic Steels

Authors: Nagarjuna Remalli, Robert Brandt

Abstract:

Down-sizing of combustion engines in automobiles are prevailed owing to required increase in efficiency. This leads to a stress increment on valve springs, which affects their intended function due to an increase in relaxation. High strength martensitic steels are used for valve spring applications. Recent investigations unveiled that low temperature creep (LTC) in martensitic steels obey a logarithmic creep law. The exhaustion theory links the logarithmic creep behavior to an activation energy which is characteristic for any given time during creep. This activation energy increases with creep strain due to barriers of low activation energies exhausted during creep. The assumption of the exhaustion theory is that the material is inhomogeneous in microscopic scale. According to these assumptions it is anticipated that small obstacles (e. g. ε–carbides) having a wide range of size distribution are non-uniformly distributed in the materials. X-ray diffraction studies revealed the presence of ε–carbides in high strength martensitic steels. In this study, high strength martensitic steels that are crept in the temperature range of 75 – 150 °C were investigated with the aid of a transmission electron microscope for the evidence of an inhomogeneous distribution of obstacles having different size to examine the validation of exhaustion theory.

Keywords: creep mechanisms, exhaustion theory, low temperature creep, martensitic steels

Procedia PDF Downloads 263
10796 Examining Relationship between Resource-Curse and Under-Five Mortality in Resource-Rich Countries

Authors: Aytakin Huseynli

Abstract:

The paper reports findings of the study which examined under-five mortality rate among resource-rich countries. Typically when countries obtain wealth citizens gain increased wellbeing. Societies with new wealth create equal opportunities for everyone including vulnerable groups. But scholars claim that this is not the case for developing resource-rich countries and natural resources become the curse for them rather than the blessing. Spillovers from natural resource curse affect the social wellbeing of vulnerable people negatively. They get excluded from the mainstream society, and their situation becomes tangible. In order to test this hypothesis, the study compared under-5 mortality rate among resource-rich countries by using independent sample one-way ANOVA. The data on under-five mortality rate came from the World Bank. The natural resources for this study are oil, gas and minerals. The list of 67 resource-rich countries was taken from Natural Resource Governance Institute. The sample size was categorized and 4 groups were created such as low, low-middle, upper middle and high-income countries based on income classification of the World Bank. Results revealed that there was a significant difference in the scores for low, middle, upper-middle and high-income countries in under-five mortality rate (F(3(29.01)=33.70, p=.000). To find out the difference among income groups, the Games-Howell test was performed and it was found that infant mortality was an issue for low, middle and upper middle countries but not for high-income countries. Results of this study are in agreement with previous research on resource curse and negative effects of resource-based development. Policy implications of the study for social workers, policy makers, academicians and social development specialists are to raise and discuss issues of marginalization and exclusion of vulnerable groups in developing resource-rich countries and suggest interventions for avoiding them.

Keywords: children, natural resource, extractive industries, resource-based development, vulnerable groups

Procedia PDF Downloads 254