Search results for: organisational features
1495 Gas Network Noncooperative Game
Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos
Abstract:
The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition
Procedia PDF Downloads 1521494 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2111493 Design and in Slico Study of the Truncated Spike-M-N SARS-CoV-2 as a Novel Effective Vaccine Candidate
Authors: Aghasadeghi MR., Bahramali G., Sadat SM., Sadeghi SA., Yousefi M., Khodaei K., Ghorbani M., Sadat Larijani M.
Abstract:
Background:The emerging COVID-19 pandemic is a serious concernfor the public health worldwide. Despite the many mutations in the virus genome, it is important to find an effective vaccine against viral mutations. Therefore, in current study, we aimed at immunoinformatic evaluation of the virus proteins immunogenicity to design a preventive vaccine candidate, which could elicit humoral and cellular immune responses as well. Methods:Three antigenic regions are included;Spike, Membrane, and Nucleocapsid amino acid sequences were obtained, and possible fusion proteins were assessed andcompared by immunogenicity, structural features, and population coverage. The best fusion protein was also evaluated for MHC-I and MHC-II T-cell epitopes and the linear and conformational B-cell epitopes. Results: Among the four predicted models, the truncated Spike protein in fusion with M and N proteins is composed of 24 highly immunogenic human MHC class I and 29 MHC class II, along with 14 B-cell linear and 61 discontinues epitopes. Also, the selected protein has high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. Conclusion: The data indicate that the truncated Spike-M-N SARS-CoV-2form which could be potential targets of neutralizing antibodies. The protein also has the ability to stimulate humoral and cellular immunity. The in silico study provided the fusion protein as a potential preventive vaccine candidate for further in vivo evaluation.Keywords: SARS-CoV-2, immunoinformatic, protein, vaccine
Procedia PDF Downloads 2231492 An Analysis of Miguel Syjuco’s Ilustrado: The Reconstructed Oriental Image
Authors: Christine Ivy A. Nogot
Abstract:
Under the colony of Spain for more than three centuries, the Philippines has a deep-rooted structure of Western ideologies and colonialism. The late 19th century, the period of Enlightenment, created a significant impact on our history when a group of middle-class Filipino men were sent to Europe to study. They were called Ilustrados, a Spanish word for erudite. They were the enlightened; the well-educated, intellectual scholars. Their writings provide intellectual grounds for the awakening of national consciousness that eventually prompted national movements and revolutions. They helped to establish a postcolonial society. In the modern era, Miguel Syjuco, a Filipino expatriate, wrote a novel and titled it Ilustrado. It is a representation of the liberal mind of the diasporic author in contemporary discourse. It provides a critical examination of the ilustrado in transition through the character of Miguel, who is also an expatriate writer. Using Syjuco’s award-winning novel as the primary text and anchored on Said’s concept of Orientalism, this paper examines how the depiction of features of the Eastern world is presented in the literary discourse. This paper looks into Said’s concept of orientalism as a hegemonic discursive structure and shows how Western superiority influences the Eastern culture in literary discourse. It explores Gramsci’s theory of cultural hegemony to explore Said’s argument that Western powers conquer the orient through culture and ideology. This paper presents how dominant ideologies and the social context redefine the ilustrado in the contemporary era.Keywords: cultural hegemony, ilustrado, orientalism, postcolonial
Procedia PDF Downloads 771491 Examining the Relevance of Electoral Commission in Fostering Democratic Governance in Nigeria
Authors: Ahmed Usman
Abstract:
This paper attempts to examine the relevance of an Electoral Commission in the democratic process of governance in Nigeria. However, democratic system and governance present a clear indication of responsive and responsible governments. The idea of a government being responsive and responsible is based on the premise of conventional principles of democracy such as freedom of political, economic and social rights of and individual. More so, upholding of the Rule of Law based on the ground of constitutionalism is a clear manifestation of the democratic governance. The burdens of ascertaining theses democratic ethos rely solely on the constituted election management body known as Independent National Electoral Commission (INEC) for the case of Nigeria. This body is however, saddled with the responsibility of organizing and conducting periodic regular credible election known as free and fair election. The body also, is expected to be neutral, and independent to ensure fair treatment to all. It is on the basis of this fair treatment that credible leaders emerged. To this end, the paper examines the powers, functions and features of Independent National Electoral Commission. More so, the concepts of election and democracy have been operationalized. It is obvious that electoral process in Nigeria is marred with series of problems of which the paper identified and solutions were proffered towards credible, free and fair elections for sustainable democratic governance. In order to succinctly discuss and analyze the issues at stake, Structural Functional Analysis theory is adopted as a theoretical frame work for the paper.Keywords: election, electoral commission, democracy, governance
Procedia PDF Downloads 2091490 Quantum Inspired Security on a Mobile Phone
Authors: Yu Qin, Wanjiaman Li
Abstract:
The widespread use of mobile electronic devices increases the complexities of mobile security. This thesis aims to provide a secure communication environment for smartphone users. Some research proves that the one-time pad is one of the securest encryption methods, and that the key distribution problem can be solved by using the QKD (quantum key distribution). The objective of this project is to design an Android APP (application) to exchange several random keys between mobile phones. Inspired by QKD, the developed APP uses the quick response (QR) code as a carrier to dispatch large amounts of one-time keys. After evaluating the performance of APP, it allows the mobile phone to capture and decode 1800 bytes of random data in 600ms. The continuous scanning mode of APP is designed to improve the overall transmission performance and user experience, and the maximum transmission rate of this mode is around 2200 bytes/s. The omnidirectional readability and error correction capability of QR code gives it a better real-life application, and the features of adequate storage capacity and quick response optimize overall transmission efficiency. The security of this APP is guaranteed since QR code is exchanged face-to-face, eliminating the risk of being eavesdropped. Also, the id of QR code is the only message that would be transmitted through the whole communication. The experimental results show this project can achieve superior transmission performance, and the correlation between the transmission rate of the system and several parameters, such as the QR code size, has been analyzed. In addition, some existing technologies and the main findings in the context of the project are summarized and critically compared in detail.Keywords: one-time pad, QKD (quantum key distribution), QR code, application
Procedia PDF Downloads 1461489 Spectrofluorometric Studies on the Interactions of Bovine Serum Albumin with Dimeric Cationic Surfactants
Authors: Srishti Sinha, Deepti Tikariha, Kallol K. Ghosh
Abstract:
Over the past few decades protein-surfactant interactions have been a subject of extensive studies as they are of great importance in wide variety of industries, biological, pharmaceutical and cosmetic systems. Protein-surfactant interactions have been explored the effect of surfactants on structure of protein in the form of solubilization and denaturing or renaturing of protein. Globular proteins are frequently used as functional ingredients in healthcare and pharmaceutical products, due to their ability to catalyze biochemical reactions, to be adsorbed on the surface of some substance and to bind other moieties and form molecular aggregates. One of the most widely used globular protein is bovine serum albumin (BSA), since it has a well-known primary structure and been associated with the binding of many different categories of molecules, such as dyes, drugs and toxic chemicals. Protein−surfactant interactions are usually dependent on the surfactant features. Most of the research has been focused on single-chain surfactants. More recently, the binding between proteins and dimeric surfactants has been discussed. In present study interactions of one dimeric surfactant Butanediyl-1,4-bis (dimethylhexadecylammonium bromide) (16-4-16, 2Br-) and the corresponding single-chain surfactant cetyl trimethylammonium bromide (CTAB) with bovine serum albumin (BSA) have been investigated by surface tension and spectrofluoremetric methods. It has been found that the bindings of all gemini surfactant to BSA were cooperatively driven by electrostatic and hydrophobic interactions. The gemini surfactant carrying more charges and hydrophobic tails, showed stronger interactions with BSA than the single-chain surfactant.Keywords: bovine serum albumin, gemini surfactants, hydrophobic interactions, protein surfactant interaction
Procedia PDF Downloads 5091488 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 891487 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2721486 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2961485 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 2291484 Recreating Old Gardens, a Dynamic and Sustainable Design Pattern for Urban Green Spaces, Case Study: Persian Garden
Authors: Mina Sarabi, Dariush Sattarzadeh, Mitra Asadollahi Oula
Abstract:
In the old days, gardens reflect the identity and culture of each country. Persian garden in urban planning and architecture has a high position and it is a kind of paradise in Iranian opinion. But nowadays, the gardens were replaced with parks and urban open spaces. On the other hand, due to the industrial development of cities and increasing air pollution in urban environments, living in this spaces make problem for people. And improving ecological conditions will be felt more than ever. The purposes of this study are identification and reproduction of Persian garden pattern and adaptation of it with sustainability features in green spaces in contemporary cities and developing meaningful green spaces instead of designing aimless spaces in urban environment. The research method in this article is analytical and descriptive. Studying and collecting information about Iranian garden pattern is referring to library documents, articles and analysis case studies. The result reveals that Persian garden was the main factor the bond between man and nature. But in the last century, this relationship is in trouble. It has a significant impact in reducing the adverse effects of urban air pollution, noise and etc as well. Nowadays, recreated pattern of Iranian gardens in urban green spaces not only keep Iranian identity for future generations but also, using the principles of sustainability can play an important role in sustainable development and quality space of a city.Keywords: green open spaces, nature, Persian garden, urban sustainability
Procedia PDF Downloads 2501483 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air
Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong
Abstract:
It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde
Procedia PDF Downloads 1331482 A Study of the Establishment of the Evaluation Index System for Tourist Attraction Disaster Resilience
Authors: Chung-Hung Tsai, Ya-Ping Li
Abstract:
Tourism industry is highly depended on the natural environment and climate. Compared to other industries, it is more susceptible to environment and climate. Taiwan belongs to a sea island country and located in the subtropical monsoon zone. The events of climate variability, frequency of typhoons and rainfalls raged are caused regularly serious disaster. In traditional disaster assessment, it usually focuses on the disaster damage and risk assessment, which is short of the features from different industries to understand the impact of the restoring force in post-disaster resilience and the main factors that constitute resilience. The object of this study is based on disaster recovery experience of tourism area and to understand the main factors affecting the tourist area of disaster resilience. The combinations of literature review and interviews with experts are prepared an early indicator system of the disaster resilience. Then, it is screened through a Fuzzy Delphi Method and Analytic Network Process for weight analysis. Finally, this study will establish the tourism disaster resilience evaluation index system considering the Taiwan's tourism industry characteristics. We hope that be able to enhance disaster resilience after tourist areas and increases the sustainability of industrial development. It is expected to provide government departments the tourism industry as the future owner of the assets in extreme climates responses.Keywords: resilience, Fuzzy Delphi Method, Analytic Network Process, industrial development
Procedia PDF Downloads 4041481 Magnesium Ameliorates Lipopolysaccharide-Induced Liver Injury in Mice
Authors: D. M. El-Tanbouly, R. M. Abdelsalam, A. S. Attia, M. T. Abdel-Aziz
Abstract:
Lipopolysaccharide (LPS) endotoxin, a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis. LPS administration induces systemic inflammation that mimics many of the initial clinical features of sepsis and has deleterious effects on several organs including the liver and eventually leading to septic shock and death. The present study aimed to investigate the protective effect of magnesium, a well-known cofactor in many enzymatic reactions and a critical component of the antioxidant system, on hepatic damage associated with LPS induced- endotoxima in mice. Mg (20 and 40 mg/kg, po) was administered for 7 consecutive days. Systemic inflammation was induced one hour after the last dose of Mg by a single dose of LPS (2 mg/kg, ip) and three hours thereafter plasma was separated, animals were sacrificed and their livers were isolated. LPS-treated mice suffered from hepatic dysfunction revealed by histological observation, elevation in plasma transaminases activities, C-reactive protein content and caspase-3, a critical marker of apoptosis. Liver inflammation was evident by elevation in liver cytokines contents (TNF-α and IL-10) and myeloperoxidase (MPO) activity. Additionally, oxidative stress was manifested by increased liver lipoperoxidation, glutathione depletion, elevated total nitrate/nitrite (NOx) content and glutathione peroxidase (GPx) activity. Pretreatment with Mg largely mitigated these alternations through its anti-inflammatory and antioxidant potentials. Mg, therefore, could be regarded as an effective strategy for prevention of liver damage associated with septicemia.Keywords: LPS, liver damage, magnesium, septicemia
Procedia PDF Downloads 3971480 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 321479 A Data Driven Methodological Approach to Economic Pre-Evaluation of Reuse Projects of Ancient Urban Centers
Authors: Pietro D'Ambrosio, Roberta D'Ambrosio
Abstract:
The upgrading of the architectural and urban heritage of the urban historic centers almost always involves the planning for the reuse and refunctionalization of the structures. Such interventions have complexities linked to the need to take into account the urban and social context in which the structure and its intrinsic characteristics such as historical and artistic value are inserted. To these, of course, we have to add the need to make a preliminary estimate of recovery costs and more generally to assess the economic and financial sustainability of the whole project of re-socialization. Particular difficulties are encountered during the pre-assessment of costs since it is often impossible to perform analytical surveys and structural tests for both structural conditions and obvious cost and time constraints. The methodology proposed in this work, based on a multidisciplinary and data-driven approach, is aimed at obtaining, at very low cost, reasonably priced economic evaluations of the interventions to be carried out. In addition, the specific features of the approach used, derived from the predictive analysis techniques typically applied in complex IT domains (big data analytics), allow to obtain as a result indirectly the evaluation process of a shared database that can be used on a generalized basis to estimate such other projects. This makes the methodology particularly indicated in those cases where it is expected to intervene massively across entire areas of historical city centers. The methodology has been partially tested during a study aimed at assessing the feasibility of a project for the reuse of the monumental complex of San Massimo, located in the historic center of Salerno, and is being further investigated.Keywords: evaluation, methodology, restoration, reuse
Procedia PDF Downloads 1871478 Organic Geochemical Characterization of the Ordovician Source Rock in the Chotts Basin, Southern Tunisia
Authors: Anis Belhaj Mohamed, Moncef Saidi, Mohamed Soussi, Ibrahim Bouazizi, Monia Ben Jrad
Abstract:
This paper summarizes the results of Rock-Eval pyrolysis and biomarker data of shale samples collected from the Ordovician age (Llanvirnian-Llandeilian) (Azzel Formation) in the Chotts basin southern part of Tunisia. The results are supported by analysis of cutting samples from wells. The Azzel shales has poor to moderate, occasionally good, potential for sourcing oil and gas with Total Organic Carbon (TOC) content varying from 0.80 to 4.49 % and petroleum potential (PP) values varying between 0.68 to 9.20 Kg of HC/t rock in Baguel and Alaguia wells. However, the Azzel Formation show poor to fair TOC and PP in Elfranig and HajBrahim wells not exceeding 1.10% and 1.05 kg HC/t of rock respectively. The Hydrogen Index (HI) and the Oxygen Index (OI) values of 95–165 mg S2/g TOC and of 33–108 mg CO2/g rock relatively show that the Ordovician shales exhibit type II Kerogen that reached the main oil window stage and that the organic matter was bad preserved, Tmax values of 435 – 448°C indicate the organic matter is mature. The biomarker features of the extract samples are characterized by high proportion of tricyclic terpanes that are dominated by C23 and C21 tricyclic terpanes. The hopanes fraction is dominated by C29 and C30 hopanes. The Ordovician shales show a predominance of C27 over C29 steranes (C27/C29>1) and relatively high proportions of diasteranes supporting the shaly character of the source rock.Keywords: biomarkers, organic geochemistry, ordovician source rock, diasteranes
Procedia PDF Downloads 5061477 Spatial-Temporal Characteristics of Bacterioplankton in the Upper Part of Taktakorpu Water Complex
Authors: Fidan Z. Aliyeva
Abstract:
In the presented article, the formation of the microbiological regime in the Takhtakorpu water complex, as well as spatial-temporal changes in the quantitative indicators of bacterioplankton, were studied. Taktakorpu water complex was built as a continuation of the reconstruction and expansion project of the Samur-Absheron irrigation system in Shabran on the northeastern slope of our republic. It should be noted that with the implementation of the project, the water supply of up to 150 thousand ha of useful land in the northern region has been improved, and the drinking, technical, and irrigation water needs of the population of Baku, Sumgayit and also the Absheron Peninsula, and industrial and agricultural areas, joining the agricultural circulation of new soil areas, Takhtakorpu reservoir with a volume of 238.4 million m³, connected with them -Valvalachay- Takhtakorpu and Takhtakorpu-Jeyranbatan canals have been created, conditions have been created to increase the resources of the Jeyranbatan reservoir. Special attention is paid to the study of saprophytic bacteria in order to determine the development dynamics and biochemical activity of the microbiological regime in the Takhtakorpu Water Complex, which is of great strategic importance for our republic, to evaluate changes under the influence of anthropogenic factors, as well as to evaluate the properties of self-cleaning, mineralization features of organic substances of allochthon and autochthonous origin. One of the main goals of our research is to determine the main structural indicators of bacterioplankton in the upper part of Takhtakorpu water complex in the first three stations and analyzing their quantitative values in a certain time aspect.Keywords: water, irrigation, sewage, wastewater
Procedia PDF Downloads 741476 Excision and Reconstruction of a Hypertrophic and Functional Bleb with Bovine Pericardium (Tutopatch®) and Amniotic Membrane: A Case Report
Authors: Blanca Fatela Cantillo, Silvia Iglesias Cerrato, Guadalupe Garrido Ceca
Abstract:
Purpose: Bleb dysfunction is a late complication following glaucoma filtration surgery. We describe our surgical technique for excision and reconstruction of a hypertrophic bleb complication using bovine pericardium patch graft (Tutopatch®) and amniotic membrane. Material and methods: The case report presents a hypertrophic bleb over the cornea with good intraocular pressure control. The hanging bleb without leak caused dysesthesia and high irregular astigmatism. Bleb reconstruction involved the excision of corneal fibrous material and avascular conjunctiva, preserving the original scleral and tennon. Bovine pericardium patch graft (Tutopatch®) was sited over these with fixed sutures, reinforcing the underlying scleral, and the conjunctiva advanced. The superior epithelium corneal defect was covered using an amniotic membrane. Conclusion: Repair of bleb dysfunction with varied techniques has been reported, including conjunctival advancement, use of scleral patch graft, dural patch graft, or pericardium. Additional use of amniotic membrane promotes epithelialization and exhibits anti-fibrotic and anti-inflammatory features. Reconstruction with bovine pericardium patch graft and amniotic membrane resulted in pain relief, visual rehabilitation, and good aesthetic results, with preservation of bleb function.Keywords: reconstruction, hypertrophic bleb, bovine pericardium, amniotic membrane, dysesthesia of the bleb
Procedia PDF Downloads 781475 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications
Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf
Abstract:
In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.Keywords: planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C and Ku
Procedia PDF Downloads 1911474 Women Empowerment in Cassava Production: A Case Study of Southwest Nigeria
Authors: Adepoju A. A., Olapade-Ogunwole F., Ganiyu M. O.
Abstract:
This study examined women's empowerment in cassava production in southwest Nigeria. The contributions of the five domains namely decision about agricultural production, decision-making power over productive resources, control of the use of income, leadership and time allocation to women disempowerment, profiled the women based on their socio-economics features and determined factors influencing women's disempowerment. Primary data were collected from the women farmers and processors through the use of structured questionnaires. Purposive sampling was used to select the LGAs and villages based on a large number of cassava farmers and processors, while cluster sampling was used to select 360 respondents in the study area. Descriptive statistics such as bar charts and percentages, Women Empowerment in Agriculture (WEAI), and the Logit regression model were used to analyze the data collected. The results revealed that 63.88% of the women were disempowered. Lack of decision-making power over productive resources; 36.47% and leadership skills; 33.26% contributed mostly to the disempowerment of the women. About 85% of the married women were disempowered, while 76.92% of the women who participated in social group activities were more empowered than their disempowered counterparts. The findings showed that women with more years of processing experience have the probability of being disempowered while those who engage in farming as a primary livelihood activity, and participate in social groups among others have the tendency to be empowered. In view of this, it was recommended that women should be encouraged to farm and contribute to social group activities.Keywords: cassava, production, empowerment, southwest, Nigeria
Procedia PDF Downloads 581473 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD
Procedia PDF Downloads 3961472 Configuration as a Service in Multi-Tenant Enterprise Resource Planning System
Authors: Mona Misfer Alshardan, Djamal Ziani
Abstract:
Enterprise resource planning (ERP) systems are the organizations tickets to the global market. With the implementation of ERP, organizations can manage and coordinate all functions, processes, resources and data from different departments by a single software. However, many organizations consider the cost of traditional ERP to be expensive and look for alternative affordable solutions within their budget. One of these alternative solutions is providing ERP over a software as a service (SaaS) model. This alternative could be considered as a cost effective solution compared to the traditional ERP system. A key feature of any SaaS system is the multi-tenancy architecture where multiple customers (tenants) share the system software. However, different organizations have different requirements. Thus, the SaaS developers accommodate each tenant’s unique requirements by allowing tenant-level customization or configuration. While customization requires source code changes and in most cases a programming experience, the configuration process allows users to change many features within a predefined scope in an easy and controlled manner. The literature provides many techniques to accomplish the configuration process in different SaaS systems. However, the nature and complexity of SaaS ERP needs more attention to the details regarding the configuration process which is merely described in previous researches. Thus, this research is built on strong knowledge regarding the configuration in SaaS to define specifically the configuration borders in SaaS ERP and to design a configuration service with the consideration of the different configuration aspects. The proposed architecture will ensure the easiness of the configuration process by using wizard technology. Also, the privacy and performance are guaranteed by adopting the databases isolation technique.Keywords: configuration, software as a service, multi-tenancy, ERP
Procedia PDF Downloads 3931471 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image
Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa
Abstract:
A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever
Procedia PDF Downloads 1201470 Balancing Aesthetics, Sustainability, and Safety in Handmade Fabric Face Masks: A Testimony of Creativity and Adaptability
Authors: Anne Mastamet-Mason, Oluwatosin Onakoya, Karla Tissiman
Abstract:
The COVID-19 pandemic that ravaged the world in 2020 brought about the need for handmade fabric face masks in South Africa and beyond. These masks showcased individuality and environmental responsibility and effectively aided our battle against the virus. These practical masks held significant meaning, representing human creativity, resilience, and commitment to sustainability in adversity. This paper examines how aesthetics, sustainability, and safety were achieved in the Handmade Fabric Face Masks. It analyses how their integration signified human agility and resilience to the pandemic while promoting dignity and environmental welfare. The research conducted a qualitative analysis to choose handmade fabric face masks and assess their aesthetic, sustainable, and safety features. The study involved interviewing a group of mask designers and users who evaluated the masks' efficacy in providing protection, aesthetics, and environmental sustainability. Although the designers demonstrated a high level of knowledge in the design aspects, the results indicated a need for more information regarding the functional safety measures and some environmental factors in mask selection and production. The mask analysis also revealed that the masks available in the market combined aesthetics and environmental protection but had limited safety measures. Despite the lack of balance of aesthetics, sustainability, and safety among the designers and the users of hand-fabric masks, functional aspects of fabrics and sustainability literacy are essentialKeywords: sustainable fashion, fabric mask, aesthetics, safety measures
Procedia PDF Downloads 641469 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values
Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec
Abstract:
A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods
Procedia PDF Downloads 2961468 Medicinal and Aromatic Plants of Borcka (Artvin)
Authors: Özgür Emi̇nağaoğlu, Hayal Akyildirim Beğen, Şevval Sali̇oğlu
Abstract:
In this study, the plant used for purification and aromatic purposes by the public in Adagül, Akpınar, Alaca, Ambarlı, Arkaköy, Avcılar, Balcı, Civan, Demirciler, Düzköy, İbrikli, Kale, Kaynarca and Taraklı villages in Borcka (Artvin) district between 2020-2022. The purpose of the study, determining the surgical common and local names, regions, botanical features, used parts of plants, purpose of use, local usage intensive, and giving literature data. The research area is located on the A8 square according to Davis's grid system; its phytogeographic extensions are in the Holarctic regions, and the Euro-Siberian flora settlement is in the Colchic subsection of the Euxine region. In the research area, 71 personal questionnaires were applied. As a result of the surveys, it was determined that 93 plant species belonging to 44 families were used by the local people for purification and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (15 taxa), Astericaeae (9 taxa), Lamiaceae (7 taxa), Crassulaceae (4 taxa). As a result of the survey studies, Plantago major L. is known by almost all participants. The most used plants were Allium scorodoprasum, Helichrysum arenarium, Alnus glutinosa subsp. barbata, Juglans regia, Tilia rubra subsp. caucasica, Picea orientalis, Urtica dioica. These plants are used in the treatment of many diseases. Some of these plants that grow in Borçka are used in different countries for the treatment of the same diseases.Keywords: artvin, borçka, medicinal, aromatic, plant
Procedia PDF Downloads 701467 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 1191466 Fake News Detection for Korean News Using Machine Learning Techniques
Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.Keywords: fake news detection, Korean news, machine learning, text mining
Procedia PDF Downloads 275