Search results for: specific learning disability
12107 An Investigation of Prior Educational Achievement on Engineering Student Performance
Authors: Jovanca Smith, Derek Gay
Abstract:
All universities possess a standard by which students are assessed and administered into their programs. This paper considers the effect of the educational history of students, as measured by specific subject grades in Caribbean examinations, on overall performance in introductory engineering math and mechanics courses. Results reflect a correlation between the highest grade in the Caribbean examinations with a higher probability of successful advancement in the university courses. Alternatively, lower entrance grades are commensurate with underperformance in the university courses. Results also demonstrate that students matriculating with the Caribbean examinations will not necessarily possess a significant advantage over students entering through an alternative route, and while previous educational background of students is a significant indicator of tentative performance in the University level math and mechanics courses, it is not the sole factor.Keywords: bimodal distribution, differential learning, engineering education, entrance qualification
Procedia PDF Downloads 36212106 From Teaching Methods to Learning Styles: Toward Humanizing Education and Building Rapport with Students at Sultan Qaboos University
Authors: Mounir Ben Zid
Abstract:
The controversy over the most effective teaching method to facilitate the increase of a student's knowledge has remained a frustration for poetry teachers at Sultan Qaboos University in Oman for the last ten years. Scholars and educationists have pursued answers to this question, and tremendous effort has been marshalled to discover the optimum teaching strategy, with little success. The present study stems from this perpetual frustration among teachers of poetry and the dispute about the repertoire of teaching methods. It attempts to shed light on an alternative direction which, it is believed, has received less scholarly attention than deserved. It emphasizes the need to create a democratic and human atmosphere of learning, arouses students' genuine interest, provides students with aesthetic pleasure, and enable them to appreciate and enjoy the beauty and musicality of words in poems. More important, this teaching-learning style should aim to secure rapport with students, invite teachers to inspire the passion and love of poetry in their students and help them not to lose the sense of wonder and enthusiasm that should be in the forefront of enjoying poetry. Hence, it is the need of the time that, after they have an interest, feeling and desire for poetry, university students can move to heavier tasks and discussions about poetry and how to further understand and analyze what is being portrayed. It is timely that the pendulum swung in support of the humanization of education and building rapport with students at Sultan Qaboos University.Keywords: education, humanization, learning style, Rapport
Procedia PDF Downloads 24512105 ICT in Education – A Quest for Quality Learning in the 21st Century
Authors: Adam Johnbull
Abstract:
The paper discusses ICT in Education as a quest for quality learning in the 21st century. Education is the key that unlock the door to development, without adequate education of the citizenry, the development of a nation becomes a sham. Information Communication Technologies (ICTs) has revolutionized the way people work today and are now transforming education systems. As a result, if schools train children in yesterday’s skills and technologies they may not be effective and fit in tomorrow’s world. This is a sufficient reason for ICT’s to win global recognition and attention and thus ensure desire quality in our school system. Thus, the purpose of the paper is to discuss amongst others, what is ICT. The roles of ICT’s in education, limitation and key challenges of integrating ICT to education in the enhancement of student learning and experiences in other to encourage policy makers, school administrators and teachers pay the required attention to integrate this technology in the education system. The paper concludes that regardless of all the limitation characterizing it. ICT benefit education system to provide quality education in the 21st century.Keywords: ICTs, quest, information, global, sham, century
Procedia PDF Downloads 42612104 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 17812103 Learning and Rethinking Language through Gendered Experiences
Authors: Neha Narayanan
Abstract:
The paper tries to explore the role of language in determining spaces occupied by women in everyday lives. It is inspired from an ongoing action research work which employs ‘immersion’- arriving at a research problematic through community research, as a methodology in a Kondh adivasi village, Kirkalpadu located in Rayagada district of the Indian state of Odisha. In the dominant development discourse, language is associated with either preservation or conservation of endangered language or empowerment through language. Beyond these, is the discourse of language as a structure, with the hegemonic quality to organise lifeworld in a specific manner. This rigid structure leads to an experience of constriction of space for women. In Kirkalpadu, the action research work is with young and unmarried women of the age 15-25. During daytime, these women are either in the agricultural field or in the bari -the backyard of the house whose rooms are linearly arranged one after the other ending with the kitchen followed by an open space called bari (in Odia) which is an intimate and gendered space- where they are not easily visible. They justify the experience of restriction in mobility and fear of moving out of the village alone by the argument that the place and the men are nihi-aaeh (not good). These women, who have dropped out of school early to contribute to the (surplus) labour requirement in the household, want to learn English to be able to read signboards when they are on the road, to be able to fill forms at a bank and use mobile phones to communicate with their romantic partner(s). But the incapacity to have within one’s grasp the province of language and the incapacity to take the mobile phone to the kind of requirements marked by the above mentioned impossible transactions with space restricts them to the bari of the house. The paper concludes by seeking to explore the possibilities of learning and rethinking languages which takes into cognizance the gendered experience of women and the desire of women to cross the borders and occupy spaces restricted to them.Keywords: action research, gendered experience, language, space
Procedia PDF Downloads 17112102 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 11612101 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring
Procedia PDF Downloads 15112100 A Case Study on English Camp in UNISSA: An Approach towards Interactive Learning Outside the Classroom
Authors: Liza Mariah Hj. Azahari
Abstract:
This paper will look at a case study on English Camp which was an activity coordinated at the Sultan Sharif Ali Islamic University in 2011. English Camp is a fun and motivation filled activity which brings students and teachers together outside of the classroom setting into a more diverse environment. It also enables teacher and students to gain proximate time together for a mutual purpose which is to explore the language in a more dynamic and relaxed way. First of all, the study will look into the background of English Camp, and how it was introduced and implemented from different contexts. Thereafter, it will explain the objectives of the English Camp coordinated at our university, UNISSA, and what types of activities were conducted. It will then evaluate the effectiveness of the camp as to what extent it managed to meet its motto, which was to foster dynamic interactive learning of English Language. To conclude, the paper presents a potential for further research on the topic as well as a guideline for educators who wish to coordinate the activity. Proposal for collaboration in this activity is further highlighted and encouraged within the paper for future implementation and endeavor.Keywords: English camp, UNISSA, interactive learning, outside
Procedia PDF Downloads 56912099 Enhancing Emotional Regulation in Autistic Students with Intellectual Disabilities through Visual Dialogue: An Action Research Study
Authors: Tahmina Huq
Abstract:
This paper presents the findings of an action research study that aimed to investigate the efficacy of a visual dialogue strategy in assisting autistic students with intellectual disabilities in managing their immediate emotions and improving their academic achievements. The research sought to explore the effectiveness of teaching self-regulation techniques as an alternative to traditional approaches involving segregation. The study identified visual dialogue as a valuable tool for promoting self-regulation in this specific student population. Action research was chosen as the methodology due to its suitability for immediate implementation of the findings in the classroom. Autistic students with intellectual disabilities often face challenges in controlling their emotions, which can disrupt their learning and academic progress. Conventional methods of intervention, such as isolation and psychologist-assisted approaches, may result in missed classes and hindered academic development. This study introduces the utilization of visual dialogue between students and teachers as an effective self-regulation strategy, addressing the limitations of traditional approaches. Action research was employed as the methodology for this study, allowing for the direct application of the findings in the classroom. The study observed two 15-year-old autistic students with intellectual disabilities who exhibited difficulties in emotional regulation and displayed aggressive behaviors. The research question focused on the effectiveness of visual dialogue in managing the emotions of these students and its impact on their learning outcomes. Data collection methods included personal observations, log sheets, personal reflections, and visual documentation. The study revealed that the implementation of visual dialogue as a self-regulation strategy enabled the students to regulate their emotions within a short timeframe (10 to 30 minutes). Through visual dialogue, they were able to express their feelings and needs in socially appropriate ways. This finding underscores the significance of visual dialogue as a tool for promoting emotional regulation and facilitating active participation in classroom activities. As a result, the students' learning outcomes and social interactions were positively impacted. The findings of this study hold significant implications for educators working with autistic students with intellectual disabilities. The use of visual dialogue as a self-regulation strategy can enhance emotional regulation skills and improve overall academic progress. The action research approach outlined in this paper provides practical guidance for educators in effectively implementing self-regulation strategies within classroom settings. In conclusion, the study demonstrates that visual dialogue is an effective strategy for enhancing emotional regulation in autistic students with intellectual disabilities. By employing visual communication, students can successfully regulate their emotions and actively engage in classroom activities, leading to improved learning outcomes and social interactions. This paper underscores the importance of implementing self-regulation strategies in educational settings to cater to the unique needs of autistic students.Keywords: action research, self-regulation, autism, visual communication
Procedia PDF Downloads 6312098 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 17912097 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 14312096 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.Keywords: disaster management, real-time demand, reinforcement learning, relief demand
Procedia PDF Downloads 31612095 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 12912094 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 35712093 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties
Authors: Norah Alosayl
Abstract:
English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations
Procedia PDF Downloads 19112092 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 14712091 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor
Procedia PDF Downloads 43912090 Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness
Authors: Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab
Abstract:
Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. A multitude of methods have been investigated to reduce DOMS. One of the valuable method to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric contraction versus maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three groups of equal number: Group (A) “first study group”: 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as prophylactic exercise. Group (B) “second study group”: 20 subjects received maximal isometric contraction on non-dominant elbow flexors as prophylactic exercise. Group (C) “control group”: 20 subjects did not receive any prophylactic exercise. Maximal isometric contraction peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction had the greatest protective effect.Keywords: delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect
Procedia PDF Downloads 36512089 Massive Open Online Course about Content Language Integrated Learning: A Methodological Approach for Content Language Integrated Learning Teachers
Authors: M. Zezou
Abstract:
This paper focuses on the design of a Massive Open Online Course (MOOC) about Content Language Integrated Learning (CLIL) and more specifically about how teachers can use CLIL as an educational approach incorporating technology in their teaching as well. All the four weeks of the MOOC will be presented and a step-by-step analysis of each lesson will be offered. Additionally, the paper includes detailed lesson plans about CLIL lessons with proposed CLIL activities and games in which technology plays a central part. The MOOC is structured based on certain criteria, in order to ensure success, as well as a positive experience that the learners need to have after completing this MOOC. It addresses to all language teachers who would like to implement CLIL into their teaching. In other words, it presents the methodology that needs to be followed so as to successfully carry out a CLIL lesson and achieve the learning objectives set at the beginning of the course. Firstly, in this paper, it is very important to give the definitions of MOOCs and LMOOCs, as well as to explore the difference between a structure-based MOOC (xMOOC) and a connectivist MOOC (cMOOC) and present the criteria of a successful MOOC. Moreover, the notion of CLIL will be explored, as it is necessary to fully understand this concept before moving on to the design of the MOOC. Onwards, the four weeks of the MOOC will be introduced as well as lesson plans will be presented: The type of the activities, the aims of each activity and the methodology that teachers have to follow. Emphasis will be placed on the role of technology in foreign language learning and on the ways in which we can involve technology in teaching a foreign language. Final remarks will be made and a summary of the main points will be offered at the end.Keywords: CLIL, cMOOC, lesson plan, LMOOC, MOOC criteria, MOOC, technology, xMOOC
Procedia PDF Downloads 19412088 Exploring the Effectiveness and Challenges of Implementing Self-Regulated Learning to Improve Spoken English
Authors: Md. Shaiful Islam, Mahani Bt. Stapa
Abstract:
To help learners overcome their struggle in developing proficiency in spoken English, self-regulated learning strategies seem to be promising. Students in the private universities in Bangladesh are expected to communicate with the teachers, peers, and staff members in English, but most of them suffer from their inadequate oral communicative competence in English. To address this problem, the researchers adopted a qualitative research approach to answer the research questions. They employed the learner diary method to collect data from the first-semester undergraduate students of a reputed private university in Bangladesh who were involved in writing weekly diaries about their use of self-regulated learning strategies to improve speaking in an English speaking course. The learners were provided with prompts for writing the diaries. The thematic analysis method was applied to analyze the entries of the diaries for the identification of themes. Seven strategies related to the effectiveness of SRL for the improvement of spoken English were identified from the data, and they include goal-setting, strategic planning, identifying the sources of self-motivation, help-seeking, environmental restructuring, self-monitoring, and self-evaluation. However, the students reported in their diaries that they faced challenges that impeded their SRL strategy use. Five challenges were identified, and they entail the complex nature of SRL, lack of literacy on SRL, teachers’ preference for controlling the class, learners’ past habit of learning, and students’ addiction to gadgets. The implications the study addresses include revising the syllabus and curriculum, facilitating SRL training for students and teachers, and integrating SRL in the lessons.Keywords: private university in Bangladesh, proficiency, self-regulated learning, spoken English
Procedia PDF Downloads 16012087 Multi-source Question Answering Framework Using Transformers for Attribute Extraction
Authors: Prashanth Pillai, Purnaprajna Mangsuli
Abstract:
Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.Keywords: natural language processing, deep learning, transformers, information retrieval
Procedia PDF Downloads 19312086 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English
Authors: Ghazi Alotaibi
Abstract:
The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment
Procedia PDF Downloads 45612085 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 14912084 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning
Authors: Thomas James Bell III
Abstract:
Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education
Procedia PDF Downloads 14212083 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 68412082 Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences
Authors: Abu Salim Mustafa
Abstract:
The comparisons of mycobacterial genomes have identified several Mycobacterium tuberculosis-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to M. tuberculosis-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested M. tuberculosis-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified M. tuberculosis-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis.Keywords: genomic regions of differences, Mycobacterium tuberculossis, peptides, serodiagnosis
Procedia PDF Downloads 18312081 Drawings Reveal Beliefs of Japanese University Students
Authors: Sakae Suzuki
Abstract:
Although Japanese students study English for six years in secondary schools, they demonstrate little success with it when they enter higher education. Learners’ beliefs can predict the future behavior of students, so it may be effective to investigate how learners’ beliefs limit their success and how beliefs might be nudged in a positive direction. While many researchers still depend on a questionnaire called BALLI to reveal explicit beliefs, alternative approaches, especially those designed to reveal implicit beliefs, might be helpful for promoting learning. The present study seeks to identify beliefs with a discursive approach using visual metaphors and narratives. Employing a sociocultural framework, this study investigates how students’ beliefs are revealed by drawings of themselves and their surrounding environments and artifacts while they are engaged in language learning. Research questions are: (1) Can we identify beliefs through an analysis of students’ visual narratives? (2) What environments and artifacts can be found in students’ drawings, and what do they mean? (3) To what extent do students see language learning as a solitary, rather than a social, activity? Participants are university students majoring in science and technology in Japan. The questionnaire was administered to 70 entering students in April, 2014. Data included students drawings of themselves as learners of English as well as written descriptions of students’ backgrounds, English-learning experiences, and analogies and metaphors that they used in written descriptions of themselves as learners. Data will be analyzed qualitatively and quantitatively. Anticipated results include students’ perceptions of themselves as language learners, including their sense of agency, awareness of artifacts, and social contexts of language learning. Comments will be made on implications for teaching, as well as the use of visual narratives as research tools, and recommended further research.Keywords: drawings, learners' beliefs, metaphors, BALLI
Procedia PDF Downloads 49212080 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 27412079 The Experiences of Agency in the Utilization of Twitter for English Language Learning in a Saudi EFL Context
Authors: Fahd Hamad Alqasham
Abstract:
This longitudinal study investigates Saudi students’ use trajectory and experiences of Twitter as an innovative tool for in-class learning of the English language in a Saudi tertiary English as a foreign language (EFL) context for a 12-week semester. The study adopted van Lier’s agency theory (2008, 2010) as the analytical framework to obtain an in-depth analysis of how the learners’ could utilize Twitter to create innovative ways for them to engage in English learning inside the language classroom. The study implemented a mixed methods approach, including six data collection instruments consisting of a research log, observations, focus group participation, initial and post-project interviews, and a post-project questionnaire. The study was conducted at Qassim University, specifically at Preparatory Year Program (PYP) on the main campus. The sample included 25 male students studying in the first level of PYP. The findings results revealed that although Twitter’s affordances initially paled a crucial role in motivating the learners to initiate their agency inside the classroom to learn English, the contextual constraints, mainly anxiety, the university infrastructure, and the teacher’s role negatively influenced the sustainability of Twitter’s use past week nine of its implementation.Keywords: CALL, agency, innovation, EFL, language learning
Procedia PDF Downloads 7212078 A Curricular Approach to Organizational Mentoring Programs: The Integrated Mentoring Curriculum Model
Authors: Christopher Webb
Abstract:
This work presents a new model of mentoring in an organizational environment and has important implications for both practice and research, the model frames the organizational environment as organizational curriculum, which includes the elements that affect learning within the organization. This includes the organizational structure and culture, roles within the organization, and accessibility of knowledge. The program curriculum includes the elements of the mentoring program, including materials, training, and scheduled events for the program participants. The term dyadic curriculum is coined in this work. The dyadic curriculum describes the participation, behavior, and identities of the pairs participating in mentorships. This also includes the identity work of the participants and their views of each other. Much of this curriculum is unprescribed and is unique within each dyad. It describes how participants mediate the elements of organizational and program curricula. These three curricula interact and affect each other in predictable ways. A detailed example of a mentoring program framed in this model is provided.Keywords: curriculum, mentoring, organizational learning and development, social learning
Procedia PDF Downloads 202