Search results for: fluid intelligence
1202 Profiling on the Holistic Identity of Malaysian Gifted Learners
Authors: Rorlinda Yusof, Siti Aishah Hassan, Afifah Mohamad Radzi, Mohd Hakimie Zainal Abidin, Amran Rasli, Inderbir Sandhu
Abstract:
The purpose of this study is to examine the self-identities of gifted and talented students and the relationship between self-identity and academic accomplishment. A random sample of 300 students enrolled in a secondary education programme at the Pusat GENIUS@pintar Negara was chosen as respondents of a 151-item holistic-identity component development tool. The validity of the instrument was assessed using Principal Components Analysis and Factor Analysis via an inter-Item Correlation Matrix (Loading values 0.44 to 0.86), which resulted in the formation of eight dimensions. The Cronbach's Alpha was calculated to determine the instrument's reliability (the overall result was 0.98). The results showed that students' holistic-identity profiles were relatively high (mean=4.09, standard deviation=0.449). In addition, spiritual identity received the greatest mean score (4.34) out of the eight components of identity investigated, while leadership identity received the lowest mean score (3.88). A conceptual framework for Islamic school leadership is recommended to implement spiritual values without differentiation to harmonize spiritual and intellectual intelligence among all the students. Some benchmarking studies with other centres for gifted and talented students are recommended for further research.Keywords: holistic self-identity, academic achievement, self-development programme, counselling services, gifted and talented students
Procedia PDF Downloads 1121201 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method
Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García
Abstract:
In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.Keywords: ZnO QDs, sol gel, functionalization
Procedia PDF Downloads 4331200 Aspects Regarding the Structural Behaviour of Autonomous Underwater Vehicle for Emergency Response
Authors: Lucian Stefanita Grigore, Damian Gorgoteanu, Cristian Molder, Amado Stefan, Daniel Constantin
Abstract:
The purpose of this article is to present an analytical-numerical study on the structural behavior of a sunken autonomous underwater vehicle (AUV) for emergency intervention. The need for such a study was generated by the key objective of the ERL-Emergency project. The project aims to develop a system of collaborative robots for emergency response. The system consists of two robots: unmanned ground vehicles (UGV) on tracks and the second is an AUV. The system of collaborative robots, AUV and UGV, will be used to perform missions of monitoring, intervention, and rescue. The main mission of the AUV is to dive into the maritime space of an industrial port to detect possible leaks in a pipeline transporting petroleum products. Another mission is to close and open the valves with which the pipes are provided. Finally, you will need to be able to lift a manikin to the surface, which you can take to land. Numerical analysis was performed by the finite element method (FEM). The conditions for immersing the AUV at 100 m depth were simulated, and the calculations for different fluid flow rates were repeated. From a structural point of view, the stiffening areas and the enclosures in which the command-and-control elements and the accumulators are located have been especially analyzed. The conclusion of this research is that the AUV meets very well the established requirements.Keywords: analytical-numerical, emergency, FEM, robotics, underwater
Procedia PDF Downloads 1501199 Scale Effects on the Wake Airflow of a Heavy Truck
Authors: Aude Pérard Lecomte, Georges Fokoua, Amine Mehel, Anne Tanière
Abstract:
Air quality in urban areas is deteriorated by pollution, mainly due to the constant increase of the traffic of different types of ground vehicles. In particular, particulate matter pollution with important concentrations in urban areas can cause serious health issues. Characterizing and understanding particle dynamics is therefore essential to establish recommendations to improve air quality in urban areas. To analyze the effects of turbulence on particulate pollutants dispersion, the first step is to focus on the single-phase flow structure and turbulence characteristics in the wake of a heavy truck model. To achieve this, Computational Fluid Dynamics (CFD) simulations were conducted with the aim of modeling the wake airflow of a full- and reduced-scale heavy truck. The Reynolds Average Navier-Stokes (RANS) approach with the Reynolds Stress Model (RSM)as the turbulence model closure was used. The simulations highlight the apparition of a large vortex coming from the under trailer. This vortex belongs to the recirculation region, located in the near-wake of the heavy truck. These vortical structures are expected to have a strong influence on particle dynamics that are emitted by the truck.Keywords: CDF, heavy truck, recirculation region, reduced scale
Procedia PDF Downloads 2181198 Numerical Study on Parallel Rear-Spoiler on Super Cars
Authors: Anshul Ashu
Abstract:
Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.Keywords: drag, lift, flow simulation, spoiler
Procedia PDF Downloads 5001197 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 971196 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines
Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.
Abstract:
Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition
Procedia PDF Downloads 5741195 One-Dimensional Performance Improvement of a Single-Stage Transonic Compressor
Authors: A. Shahsavari, M. Nili-Ahmadabadi
Abstract:
This paper presents an innovative one-dimensional optimization of a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of the transonic compressor is redesigned based on the constant span-wise deHaller number and diffusion. The code is applied to extract compressor meridional plane and blade to blade geometry containing rotor and stator in order to design blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for regions near walls to capture boundary layer effects and behavior. RANS equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of simulations. Then, the capability of the design method is validated by CFD that is capable of predicting the performance map. The numerical results of new geometry show about 19% increase in pressure ratio and 11% improvement in overall efficiency of the transonic stage; however, the design point mass flow rate of the new compressor is 5.7% less than that of the original compressor.Keywords: deHaller number, one dimensional design, radial equilibrium, transonic compressor
Procedia PDF Downloads 3411194 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery
Authors: Jay Ananth
Abstract:
The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development
Procedia PDF Downloads 1111193 Experimental Investigation to Find Transition Temperature of VG 30 Binder
Authors: D. Latha, V. Sunitha, Samson Mathew
Abstract:
In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site.Keywords: unmodified and modified binders, Brookfield viscometer, transition temperature, steady shear and shear rate protocol
Procedia PDF Downloads 2151192 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)
Procedia PDF Downloads 2391191 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects
Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti
Abstract:
This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects
Procedia PDF Downloads 2131190 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches
Authors: Dimitrios I. Tselentis, Simon P. Washington
Abstract:
Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches
Procedia PDF Downloads 4891189 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke
Authors: Alireza Rafie Boldaji, Ahmad Saboonchi
Abstract:
Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.Keywords: CFD, two-phase, choke, critical
Procedia PDF Downloads 2771188 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 1181187 Heat Transfer Analysis of Corrugated Plate Heat Exchanger
Authors: Ketankumar Gandabhai Patel, Jalpit Balvantkumar Prajapati
Abstract:
Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle.Keywords: heat transfer coefficient, single phase flow, mass flow rate, pressure drop
Procedia PDF Downloads 3121186 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 1601185 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)
Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair
Abstract:
This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity
Procedia PDF Downloads 141184 A 2D Numerical Model of Viscous Flow-Cylinder Interaction
Authors: Bang-Fuh Chen, Chih-Chun Chu
Abstract:
The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration
Procedia PDF Downloads 5111183 Effect of Piston and its Weight on the Performance of a Gun Tunnel via Computational Fluid Dynamics
Authors: A. A. Ahmadi, A. R. Pishevar, M. Nili
Abstract:
As the test gas in a gun tunnel is non-isentropically compressed and heated by a light weight piston. Here, first consideration is the optimum piston weight. Although various aspects of the influence of piston weight on gun tunnel performance have been studied, it is not possible to decide from the existing literature what piston weight is required for optimum performance in various conditions. The technique whereby the piston is rapidly brought to rest at the end of the gun tunnel barrel, and the resulted peak pressure is equal in magnitude to the final equilibrium pressure, is called the equilibrium piston technique. The equilibrium piston technique was developed to estimate the equilibrium piston mass; but this technique cannot give an appropriate estimate for the optimum piston weight. In the present work, a gun tunnel with diameter of 3 in. is described and its performance is investigated numerically to obtain the effect of piston and its weight. Numerical results in the present work are in very good agreement with experimental results. Significant influence of the existence of a piston is shown by comparing the gun tunnel results with results of a conventional shock tunnel in the same dimension and same initial condition. In gun tunnel, an increase of around 250% in running time is gained relative to shock tunnel. Also, Numerical results show that equilibrium piston technique is not a good way to estimate suitable piston weight and there will be a lighter piston which can increase running time of the gun tunnel around 60%.Keywords: gun tunnel, hypersonic flow, piston, shock tunnel
Procedia PDF Downloads 3731182 Thermal and Dielectric Breakdown Criterium for Low Voltage Switching Devices
Authors: Thomas Merciris, Mathieu Masquere, Yann Cressault, Pascale Petit
Abstract:
The goal of an alternative current (AC) switching device is to allow the arc (created during the opening phase of the contacts) to extinguish at the current zero. The plasma temperature rate of cooling down, the electrical characteristic of the arc (current-voltage), and the rise rate of the transient recovery voltage (TRV) are critical parameters which influence the performance of a switching device. To simulate the thermal extinction of the arc and to obtain qualitative data on the processes responsible for this phenomenon, a 1D MHD fluid model in the air was developed and coupled to an external electric circuit. After thermal extinction, the dielectric strength of the hot air (< 4kK) was then estimated by the Bolsig+ software and the critical electric fields method with the temperature obtained by the MHD simulation. The influence of copper Cu and silver Ag vapors was investigated on the thermal and dielectric part of the simulation with various current forms (100A to 1kA). Finally, those values of dielectric strength have been compared to the experimental values obtained in the case of two separating silver contacts. The preliminary results seem to indicate the dielectric strength after multiples hundreds of microseconds is the same order of magnitude as experimentally found.Keywords: MHD simulation, dielectric recovery, Bolsig+, silver vapors, copper vapors, breakers, electric arc
Procedia PDF Downloads 1141181 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1011180 Estimation of Aquifer Parameters Using Vertical Electrical Sounding in Ochudo City, Abakaliki Urban Nigeria
Authors: Moses. O. Eyankware, Benard I. Odoh, Omoleomo O. Omo-Irabor, Alex O. I. Selemo
Abstract:
Knowledge of hydraulic conductivity and transmissivity is essential for the determination of natural water flow through an aquifer. These parameters are commonly estimated from the analysis of electrical conductivity, soil properties and fluid flow data. In order to achieve a faster and cost effective analysis of aquifer parameters in Ochudo City in Abakaliki, this study relied on non-invasive geophysical methods. As part of this approach, Vertical Electrical Sounding (VES) was conducted at 20 sites in the study area for the identification of the vertical variation in subsurface lithology and for the characterization of the groundwater system. The area variously consists of between five to seven geoelectric layers of different thicknesses. Depth to aquifer ranges from 9.94 m-134.0 m while the thickness of the identified aquifer varies between 8.43 m and 44.31 m. Based on the electrical conductivity values of water samples collected from two boreholes and two hand-dug wells within the study area, the hydraulic conductivity was determined to range from 0.10 to 0.433 m/day. The estimated thickness of the aquifer and calculated hydraulic conductivity were used to derive the aquifer transmissivity. The results indicate that this parameter ranges from 1.58-7.56 m²/day with a formation factor of between 0.31-3.6.Keywords: Asu river group, transmissivity, hydraulic conductivity, abakaliki, vertical electrical sounding (VES)
Procedia PDF Downloads 3951179 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: malware detection, network security, targeted attack, computational intelligence
Procedia PDF Downloads 2631178 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle
Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir
Abstract:
Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.Keywords: separation flow, backward facing step, heat transfer, laminar flow
Procedia PDF Downloads 4691177 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor
Authors: Ibrahim Makram Ibrahim Salib
Abstract:
Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income
Procedia PDF Downloads 741176 Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid
Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh
Abstract:
In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance
Procedia PDF Downloads 4691175 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.
Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez
Abstract:
The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process
Procedia PDF Downloads 4401174 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1581173 A Computational Fluid Dynamics Study of Turbulence Flow and Parameterization of an Aerofoil
Authors: Mohamed Z. M. Duwahir, Shian Gao
Abstract:
The main objective of this project was to introduce and test a new scheme for parameterization of subsonic aerofoil, using a function called Shape Function. Python programming was used to create a user interactive environment for geometry generation of aerofoil using NACA and Shape Function methodologies. Two aerofoils, NACA 0012 and NACA 1412, were generated using this function. Testing the accuracy of the Shape Function scheme was done by Linear Square Fitting using Python and CFD modelling the aerofoil in Fluent. NACA 0012 (symmetrical aerofoil) was better approximated using Shape Function than NACA 1412 (cambered aerofoil). The second part of the project involved comparing two turbulent models, k-ε and Spalart-Allmaras (SA), in Fluent by modelling the aerofoils NACA 0012 and NACA 1412 in conditions of Reynolds number of 3 × 106. It was shown that SA modelling is better for aerodynamic purpose. The experimental coefficient of lift (Cl) and coefficient of drag (Cd) were compared with empirical wind tunnel data for a range of angle of attack (AOA). As a further step, this project involved drawing and meshing 3D wings in Gambit. The 3D wing flow was solved and compared with 2D aerofoil section experimental results and wind tunnel data.Keywords: CFD simulation, shape function, turbulent modelling, aerofoil
Procedia PDF Downloads 358