Search results for: open water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11409

Search results for: open water

8919 Wastewater Treatment by Modified Bentonite

Authors: Mecabih Zohra

Abstract:

Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.

Keywords: adsorption, bentonite, COD, wastewater

Procedia PDF Downloads 83
8918 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.

Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light

Procedia PDF Downloads 170
8917 Comparing the Quality of Electronic and Paper Do-Not-Resucscitate Forms in Hosptail

Authors: Anmol Patel

Abstract:

Cardiopulmonary resuscitation is medical intervention which should be considered for all inpatients; with a patient centred approach, open communication and accurate documentation of clinical decisions. National enquiries have shown that in a significant number of cases CPR was attempted when it was considered inappropriate. In these circumstances attempting to prevent a natural death and subjecting a patient to trauma at the end of life would deprive them of a dignified death. Anticipatory “do not attempt CPR (DNACPR)” decisions aim to prevent this for those considered appropriate. As a legal document, these forms are required to be completed accurately and thoroughly. The aim of this study was to evaluate the difference in quality of DNACPR forms completed using electronic versus paper formats. A retrospective review of DNACPR forms and related documentation was completed in two District General Hospitals in South-East England, one of which uses electronic forms, while the other uses paper red forms. 50 completed forms from each hospital were analysed to assess for legibility, and quality of completion of all subsections of the form, including communications with family, relatives and the Multidisciplinary team. The hospital using paper forms showed a 40-44% rate of completion of sections relating to communication with patients and family, compared to 70% with the hospital using electronic forms. Similar trends were observed with other sections of the form. Conclusion: This study suggests that the implementation of electronic DNACPR forms significantly improves clinical practice and promotes better open communication with patients, family and the MDT.

Keywords: DNACPR, resuscitation, DNAR, patient communication

Procedia PDF Downloads 78
8916 Response of Newzealand Rabbits to Drinking Water Treated with PolyDADMAC

Authors: Amna Beshir Medani Ahmed, Samia Mohammed Ali El Badwi, Ahmed El Amin Mohammed

Abstract:

This work has been managed to yield toxicity information on water treatment agents in the Sudan namely polyDADMAC, using New Zealand rabbits at multiple daily oral doses for a period of 10 weeks. Thirty-three heads of New Zealand rabbits were divided into 11 groups, each of three. Group 1 animals were the undosed controls. Test groups of either species were given polyDADMAC at similar dose rates of 0.5, 2.5, 4.5, 10, 15, 20, 25, 50, 100 and 150 mg/kg body weight respectively for groups 2,3,4,5,6,7,8,9,10 and 11. Clinical signs were closely observed with postmortem and histopathological examinations. Chemical investigations included enzymatic concentrations of ALP, GOT, CK, GPT and LDH together with hematological changes in Hb, PCV, RBCs and WBCs. Mortalities occurred to variable degrees irrespective of the dose level. On polyDADMAC challenge, the test species showed clinical signs of dullness, loss of weight, anorexia, diarrhea, difficulty in respiration, hind limb paralysis and recumbency. Notably oral dosing with polyDADMAC caused lung emphysema, hepatic and renal dysfunctions, irregularity in enzymatic activities and serum metabolites, sloughing of intestinal epithelium, decreased electrolytes in serum, and splenic haemosiderosis. On evaluation of the above results, polyDADMAC was considered toxic to New Zealand rabbits at all dose rates tried. Practical implications of the results were highlighted and suggestions for future work were put forward.

Keywords: polydiallyldiethylaluminiumchloride (polyDADMAC), nubian goats, toxicity of drinking water, treatment of drinking water using chemicals

Procedia PDF Downloads 373
8915 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
8914 Anxieolytic Activity of Ethyl Acetate Extract of Flowers Nerium indicum

Authors: D. S. Mohale, A. V. Chandewar

Abstract:

Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using Elevated Plus Maze and Light & dark Model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that Ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose.

Keywords: anxiety, anxieolytic, social isolation, nerium indicum, kaner

Procedia PDF Downloads 309
8913 Julia-Based Computational Tool for Composite System Reliability Assessment

Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris

Abstract:

The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.

Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow

Procedia PDF Downloads 74
8912 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils

Authors: Karim Kootahi, Seyed Abolhasan Naeini

Abstract:

The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.

Keywords: SWCC, correlations, index properties, validation

Procedia PDF Downloads 177
8911 Evaluation of the Performance of Solar Stills as an Alternative for Brine Treatment Applying the Monte Carlo Ray Tracing Method

Authors: B. E. Tarazona-Romero, J. G. Ascanio-Villabona, O. Lengerke-Perez, A. D. Rincon-Quintero, C. L. Sandoval-Rodriguez

Abstract:

Desalination offers solutions for the shortage of water in the world, however, the process of eliminating salts generates a by-product known as brine, generally eliminated in the environment through techniques that mitigate its impact. Brine treatment techniques are vital to developing an environmentally sustainable desalination process. Consequently, this document evaluates three different geometric configurations of solar stills as an alternative for brine treatment to be integrated into a low-scale desalination process. The geometric scenarios to be studied were selected because they have characteristics that adapt to the concept of appropriate technology; low cost, intensive labor and material resources for local manufacturing, modularity, and simplicity in construction. Additionally, the conceptual design of the collectors was carried out, and the ray tracing methodology was applied through the open access software SolTrace and Tonatiuh. The simulation process used 600.00 rays and modified two input parameters; direct normal radiation (DNI) and reflectance. In summary, for the scenarios evaluated, the ladder-type distiller presented higher efficiency values compared to the pyramid-type and single-slope collectors. Finally, the efficiency of the collectors studied was directly related to their geometry, that is, large geometries allow them to receive a greater number of solar rays in various paths, affecting the efficiency of the device.

Keywords: appropriate technology, brine treatment techniques, desalination, monte carlo ray tracing

Procedia PDF Downloads 71
8910 A Unified Webcam Proctoring Solution on Edge

Authors: Saw Thiha, Jay Rajasekera

Abstract:

A boom in video conferencing generated millions of hours of video data daily to be analyzed. However, such enormous data pose certain scalability issues to be analyzed efficiently, let alone do it in real-time, as online conferences can involve hundreds of people and can last for hours. This paper proposes an efficient online proctoring solution that can analyze the online conferences real-time on edge devices such as Android, iOS, and desktops. Since the computation can be done upfront on the devices where online conferences take place, it can scale well without requiring intensive resources such as GPU servers and complex cloud infrastructure. According to the linear models, face orientation does indeed impact the perceived eye openness. Also, the proposed z score facial landmark standardization was proven to be functional in detecting face orientation and contributed to classifying eye blinks with single eyelid distance computation while achieving a better f1 score and accuracy than the Eye Aspect Ratio (EAR) threshold method. Last but not least, the authors implemented the solution natively in the MediaPipe framework and open-sourced it along with the reproducible experimental results on GitHub. The solution provides face orientation, eye blink, facial activity, and translation detections out of the box and is highly customizable and extensible.

Keywords: android, desktop, edge computing, blink, face orientation, facial activity and translation, MediaPipe, open source, real-time, video conference, web, iOS, Z score facial landmark standardization

Procedia PDF Downloads 97
8909 Prioritization Ranking for Managing Moisture Problems in a Building

Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri

Abstract:

Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.

Keywords: water leakage, survey, causes, matrices, prioritization

Procedia PDF Downloads 99
8908 Morphological and Elements Constituent Effects of Allelopathic Activity

Authors: Areej Ali Baeshen

Abstract:

Allelopathy is a complex phenomenon that depends on the concentration of allelochemicals. It has both inhibitory and stimulatory effects, which may be decided by concentration of allelochemicals present in extraction. In the present study, the allelopathic effects of Eruca sativa, Mentha peperina, and Coriandrum sativum water extract prepared by grinding fresh leaves of the medicinal plants in distilled water and three concentrations were taken from the crude extracts (100%, 50% and 25% in addition to 0% as control), and were tested for their effects on seed germination and some growth parameters of Zea mays. The experiment was conducted in sterilized Petri dishes under the natural laboratory conditions at temperature of 25°C, with a 24 h, 48 h, 72 h, 96 h and 120 h time interval for seed germination and 24 h, 48 h and 72 h for radicle length. The effects of different concentrations of aqueous extract were compared to distilled water (control, 0%). In maize, germination percentage was suppressed when plants was treated with 100% extracts, however, 50% and 25% of M. peprina increased germination percentage by 4 times more than the control. Moreover, 50% and 25% extracts of M. peperina and 50% of C. sativum increased maize radicle and plumule length by 3 to 4 times that of the control. Results of plumule fresh and dry weights revealed that concentrations of water extracts of 100% and 50% M. peperina, E. sativa 100% and E. sativa 50% reported almost similar plumule fresh weight as in control plants. The most interesting finding is the reduction in harmful salts and TDS which could be a good factor in saline soils of Saudi Arabia.

Keywords: Zea mays, Eruca sativa, Mentha peperina, Coriandrum sativum, medicinal plants, allelochemicals, aqueous extract

Procedia PDF Downloads 297
8907 Effect of PMMA Shield on the Patient Dose Equivalent from Photoneutrons Produced by High Energy Medical Linacs

Authors: Seyed Mehdi Hashemi, Gholamreza Raisali, Mehran Taheri

Abstract:

One of the important problems of using high energy linacs at IMRT is the production of photoneutrons. Besides the clinically useful photon beams, high-energy photon beams from medical linacs produce secondary neutrons. These photoneutrons increase the patient dose and may cause secondary malignancies. The effect of the shield on the reduction of photoneutron dose equivalent produced by a high energy medical linac at the patient plane is investigated in this study. To determine the photoneutron dose equivalent received to the patient a Varian linac working at 18 MV photon mode investigated. Photoneutron dose equivalent measured with Polycarbonate films of 0.25 mm thick. PC films placed at distances of 0, 10, 20, and 50 cm from the center of X-ray field on the patient couch. The results show that by increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both open and shielded fields and that by inserting the shield in the path of the X-ray beam, the photoneutron dose equivalent was decreased obviously compared to open field. Results show the shield, significantly reduces photoneutron dose equivalent to the patient. Results can be readily generalized to other models of medical linacs. It may be concluded that using this kind of shield can help more safe, inexpensive and efficient employment of high energy linacs in radiotherapy and IMRT.

Keywords: photoneutron, Linac, PMMA shield, equivalent dose

Procedia PDF Downloads 493
8906 Hydrological Benefits Sharing Concepts in Constructing Friendship Dams on Transboundary Tigris River Between Iraq and Turkey

Authors: Thair Mahmood Altaiee

Abstract:

Because of the increasing population and the growing water requirements from the transboundary water resources within riparian countries in addition to un-proper management of these transboundary water resources, it is likely that a conflicts on the water will be occurred. So it is mandatory to search solutions to mitigate the action and probabilities of these undesired conflicts. One of the solutions for these crises may be sharing the riparian countries in the management of their transboundary water resources and share benefit. Effective cooperation on a transboundary river is any action by the riparian countries that lead to improve management of the river to their mutual acceptance. In principle, friendship dams constructed by riparian countries may play an important role in preventing conflicts like the Turkish-Syrian friendship dam on Asi river (Orontes), Iranian-Tukmenistan dam on Hariroud river, Bulgarian-Turkish dam on Tundzha river, Brazil-Paraguay dam on Parana river, and Aras dam between Iran and Azerbaijan. The objective of this study is to focus the light on the hydrological aspects of cooperation in constructing dams on the transboundary rivers, which may consider an option to prevent conflicts on water between the riparian countries. The various kinds of benefits and external impacts associated with cooperation in dams construction on the transboundary rivers with a real examples will be presented and analyzed. The hydrological benefit sharing from cooperation in dams construction, which type of benefit sharing mechanisms are applicable to dams, and how they vary were discussed. The study considered the cooperative applicability to dams on shared rivers according to selected case study of friendship dams in the world to illustrate the relevance of the cooperation concepts and the feasibility of such propose cooperation between Turkey and Iraq within the Tigris river. It is found that the opportunities of getting benefit from cooperation depend mainly on the hydrological boundary and location of the dam in relation to them. The desire to cooperate on dams construction on transboundary rivers exists if the location of a dam upstream will increase aggregate net benefits. The case studies show that various benefit sharing mechanisms due to cooperation in constructing friendship dams on the riparian countries border are possible for example when the downstream state (Iraq) convinces the upstream state (Turkey) to share building a dam on Tigris river across the Iraqi –Turkish border covering the cost and sharing the net benefit derived from this dam. These initial findings may provide guidance for riparian states engaged in and donors facilitating negotiation on dam projects on transboundary rivers.

Keywords: friendship dams, transboundary rivers, water cooperation, benefit sharing

Procedia PDF Downloads 141
8905 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting

Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira

Abstract:

The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.

Keywords: water splitting, bubble, electrolysis, hydrogen production

Procedia PDF Downloads 100
8904 Comparison of Salt-Water Intrusion into Eastern and Western Coastal Aquifers of Urmia Lake thru Over-Exploration of Groundwater Resources

Authors: Saman Javadi, Mohammad Hassan Mahmoudi, Fatemeh Jafari, Aminreza Neshat

Abstract:

Urmia Lake’s water level has been dropped during the past decade. Although the most common reason in studies was declared climate change, but observation of adjacent lake (like Van in Turkey) is not the same as the common reason. Most of studies were focused on climate and land use change, but groundwater resource as one of the most important element is negligible. Due to population and agriculture activities growth, exploration of groundwater resource has been increased. In as much as continued decline of water levels can lead to saltwater intrusion, reduce stream discharge near outcrop regions and threaten groundwater quality, aquifers of this region were affected by saltwater intrusion of Urmia Lake. In this research comparison of saltwater intrusion into eastern and western coastal aquifer was studied. In conclusion eastern aquifers are in a critical situation; vice versa the western ones are in a better situation. Thus applying management of groundwater operation would be necessary for eastern aquifers.

Keywords: coastal aquifer, groundwater over-exploration, saltwater intrusion, Urmia Lake

Procedia PDF Downloads 539
8903 Evaluation of Thrombolytic Activity of Zingiber cassumunar Roxb. and Thai Herbal Prasaplai Formula

Authors: Warachate Khobjai, Suriyan Sukati, Khemjira Jarmkom, Pattaranut Eakwaropas, Surachai Techaoei

Abstract:

The propose of this study was to investigate in vitro thrombolytic activity of Zingiber cassumunar Roxb. and Prasaplai, a Thai herbal formulation of Z. cassumunar Roxb. Herbs were extracted with boiling water and concentrated by lyophilization. To observe their thrombolytic potential, an in vitro clot lysis method was applied where streptokinase and sterile distilled water were used as positive and negative controls, respectively. Crude aqueous extracts from Z. cassumunar Roxb. and Prasaplai formula showed significant thrombolytic activity by clot lysis of 17.90% and 25.21%, respectively, compared to the negative control water (5.16%) while the standard streptokinase revealed 64.78% clot lysis. These findings suggest that Z. cassumunar Roxb. exhibits moderate thrombolytic activity and cloud play an important role in the thrombolytic properties of Prasaplai formula. However, further study should be done to observe in vivo clot dissolving potential and to isolate active component(s) of these extracts.

Keywords: thrombolytic activity, clot lysis, Zingiber cassumunar Roxb., Prasaplai formula, aqueous extract

Procedia PDF Downloads 338
8902 Thermo-Elastic and Self-Healing Polyacrylamide: 2D Polymer Composite Hydrogels for Water Shutoff Treatment

Authors: Edreese H. Alsharaeh, Feven Mattews Michael, Ayman Almohsin

Abstract:

Self-healing hydrogels have many advantages since they can resist various types of stresses, including tension, compression, and shear, making them attractive for various applications. In this study, thermo-elastic and self-healing polymer composite hydrogels were prepared from polyacrylamide (PAM) and 2D fillers using in-situ method. In addition, the PAM and fillers were prepared in presence of organic crosslinkers, i.e., hydroquinone (HQ) and hexamethylenediamine (HMT). The swelling behavior of the prepared hydrogels was studied by hydrating the dried hydrogels. The thermal and rheological properties of the prepared hydrogels were evaluated before and after swelling study using thermogravimetric analysis, differential scanning calorimetric technique and dynamic mechanical analysis. From the results obtained, incorporating fillers into the PAM matrix enhanced the swelling degree of the hydrogels with satisfactory mechanical properties, attaining up to 77% self-healing efficiency compared to the neat-PAM (i.e., 29%). This, in turn, indicates addition of 2D fillers improved self-healing properties of the polymer hydrogel, thus, making the prepared hydrogels applicable for water shutoff treatments under high temperature.

Keywords: polymer hydrogels, 2D fillers, elastic self-healing hydrogels, water shutoff, swelling properties

Procedia PDF Downloads 145
8901 Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin in Western Ethiopia

Authors: Elias Jemal Abdella

Abstract:

The Blue Nile River is an important shared resource of Ethiopia, Sudan and also, because it is the major contributor of water to the main Nile River, Egypt. Despite the potential benefits of regional cooperation and integrated joint basin management, all three countries continue to pursue unilateral plans for development. Besides, there is great uncertainty about the likely impacts of climate change in water availability for existing as well as proposed irrigation and hydropower projects in the Blue Nile Basin. The main objective of this study is to quantitatively assess the impact of climate change on the hydrological regime of the upper Blue Nile basin, western Ethiopia. Three models were combined, a dynamic Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) that is used to determine climate projections for the Upper Blue Nile basin for Representative Concentration Pathways (RCPs) 4.5 and 8.5 greenhouse gas emissions scenarios for the period 2021-2050. The outputs generated from multimodel ensemble of four (4) CORDEX-RCMs (i.e., rainfall and temperature) were used as input to a Soil and Water Assessment Tool (SWAT) hydrological model which was setup, calibrated and validated with observed climate and hydrological data. The outputs from the SWAT model (i.e., projections in river flow) were used as input to a Water Evaluation and Planning (WEAP) water resources model which was used to determine the water resources implications of the changes in climate. The WEAP model was set-up to simulate three development scenarios. Current Development scenario was the existing water resource development situation, Medium-term Development scenario was planned water resource development that is expected to be commissioned (i.e. before 2025) and Long-term full Development scenario were all planned water resource development likely to be commissioned (i.e. before 2050). The projected change of mean annual temperature for period (2021 – 2050) in most of the basin are warmer than the baseline (1982 -2005) average in the range of 1 to 1.4oC, implying that an increase in evapotranspiration loss. Subbasins which already distressed from drought may endure to face even greater challenges in the future. Projected mean annual precipitation varies from subbasin to subbasin; in the Eastern, North Eastern and South western highland of the basin a likely increase of mean annual precipitation up to 7% whereas in the western lowland part of the basin mean annual precipitation projected to decrease by 3%. The water use simulation indicates that currently irrigation demand in the basin is 1.29 Bm3y-1 for 122,765 ha of irrigation area. By 2025, with new schemes being developed, irrigation demand is estimated to increase to 2.5 Bm3y-1 for 277,779 ha. By 2050, irrigation demand in the basin is estimated to increase to 3.4 Bm3y-1 for 372,779 ha. The hydropower generation simulation indicates that 98 % of hydroelectricity potential could be produced if all planned dams are constructed.

Keywords: Blue Nile River, climate change, hydropower, SWAT, WEAP

Procedia PDF Downloads 355
8900 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District

Authors: C. Matasane, C. Dwarika, R. Naidoo

Abstract:

The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou, Limpopo Province for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.

Keywords: renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation

Procedia PDF Downloads 376
8899 Persistent Organochlorine Pesticides (POPs) in Water, Sediment, Fin Fishes (Schilbes mystus and Hemichromis fasciatus) from River Ogun, Lagos, Nigeria

Authors: Edwin O. Clarke, Akintade O. Adeboyejo

Abstract:

Intensive use of pesticides resulted in dispersal of pollutants throughout the globe. This study was carried out to investigate persistent Organochlorine pesticides (POPs) in water, sediment and fin fishes, Schilbes mystus and Hemichromis fasciatus from two different sampling stations along River Ogun between the month of June 2012 and January 2013. The Organochlorine pesticides analyzed include DDT (pp’1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane), DDD, DDE (pp1,1-dichloro-2, 2-bis-(4-chlorophenyl) ethylene, HCH (gamma 1,2,3,4,5,6-hexachlorocylohexane, HCB hexachlorobenzene),Dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a octahydro- 1,4,5,8 dimethanonaphthalene). The analysis was done using Gas Chromatograph with Electron Capture Detector. In water sample, the result showed that PPDDT, Endrin aldehyde, Endrin ketone concentrations were high in both stations. The mean value of Organochlorine analyzed in water range from Beta BHC (0.50±0.10µg/l) to PP DDT (162.86±0.21µg/l) in Kara sample station and Beta BHC (0.20±0.07µg/l) to Endrin Aldehyde (76.47±0.02µg/l) in Odo-Ogun sample station. The levels of POPs obtained in sediments ranged from 0.40±0.23µg/g (Beta BHC) to 259.90 ± 1.00µg/kg (Endosulfan sulfate) in Kara sample station and 0.64±0.00µg/g (Beta BHC) to 379.77 ±0.15 µg/g (Endosulfan sulfate) in Odo-Ogun sample station. The levels of POPs obtained in fin fish samples ranged from 0.29±0.00µg/g (Delta BHC) to 197.87 ± 0.31µg/g (PP DDT) in Kara sample station and in Odo-Ogun sample station the mean value for fish samples range from 0.29 ± 0.00 µg/g (Delta BHC) to 197.87 ± 0.32 µg/g (PP DDT). The study showed that the accumulation of POPs affect the environment and reduce water quality. The results showed that the concentrations were found to exceed the maximum acceptable concentration of 0.10µg/l value set by the European Union for the protection of freshwater aquatic life and this can be hazardous if the trend is not checked.

Keywords: hazardous, persistent, pesticides, biomes

Procedia PDF Downloads 292
8898 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid

Abstract:

The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: LNG, pool fire, spill, radiation

Procedia PDF Downloads 402
8897 How Grasslands Respond in Terms of Functional Strategies to Stimulated Climate Change in Submediterranean Region

Authors: Andrea Catorci, Federico Maria Tardella, Alessandro Brica, Muhammad Umair

Abstract:

Climate change models predict for the Mediterranean region a strong increase of intensity and frequency of drought events, with an expected effect on grassland biodiversity and functioning. The research aim was to understand how the grassland species modulate their resource acquisition and conservation strategies to short-term variation of the pattern of summer water supply. The study area is mountain meadows located in the ‘‘Montagna di Torricchio’’ (1130 m a.s.l.) a Nature Reserve in central Italy. In 2017 we started a manipulative experiment for 2 year (2017-2018), and we defined two treatments, one with increasing water (watering condition) and the other with less water (drought condition). Then, we investigated how species change their resource strategies at different amount of water availability by measuring the specific leaf area (SLA) and leaf area (LA). We used ANOVAs to test the effect of treatment over time on leaf area and specific leaf area, considering all the species together and also separately according to their growth form (forb, grass, legume). Our results showed that species may respond differently depending on their growth form and that using all the species together may cover more detailed variation. Overall, resource retaining strategies (lower SLA, LA) are resulted by increase of drought condition, while increase in water amount and number of watering events fosters acquisitive strategies (higher SLA, LA). However, this pattern is not constant for all growth form. Grass species are able to maintain their strategies to variation of the pattern of water availability. Forb and legume species on the other side have shown decreasing trend of SLA, LA values with increasing drought condition, a pattern more marked for the latter growth form. These variations suggest not only an increase of slow-growing strategies for both growth form, but also a decrease of their nutrient pastoral values since their leaves are supposed to become harder. Local farmers should consider the effect of climate change on grassland and adapt their management practices to guarantee the cattle welfare.

Keywords: function strategies, grasslands, climate change, sub Mediterranean region

Procedia PDF Downloads 130
8896 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management

Authors: Vani Chintapally

Abstract:

The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.

Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating

Procedia PDF Downloads 383
8895 Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions

Authors: Hamideh Hamedi, Nima Rezaei, Sohrab Zendehboudi

Abstract:

Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties.

Keywords: oily wastewater treatment, emulsions, oil-water separation, adsorption, magnetic nanoparticles

Procedia PDF Downloads 107
8894 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health

Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo

Abstract:

The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.

Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining

Procedia PDF Downloads 57
8893 Geochemical and Geostructural Characteristics of the Groundwater System and the Role of Faults in Groundwater Movement at the Hammamet Basin, Tebessa Area (Northeast of Algeria)

Authors: Iklass Hamaili, Fehdi Chemseddine

Abstract:

Morphostructural, hydrogeological and hydrochemical approaches were applied in this study to characterize the groundwater system of Hammamet Plain, Eastern part of Algeria and its potential for exploitation. The analysis of the fractures in several Mountains forming the natural boundaries of Hammamet plain, with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). From a hydrogeological standpoint, these two mountains constitute a unit limited by faults-oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of this unit. According to the degree of fracturing and/or karstification, two basic types of aquiferous behavior have been distinguished: fissured aquifer (Essen Mountain and Troubia Mountain), and porous aquifer (Hammamet basin). After sampling and measurement operations, the quantity of chemical components was determined. Thus, the study of the hydrochemical characteristics of this groundwater shows on Piper’s diagram that the majority of them are mainly HCO₃- and Ca₂+ water types. The ionic speciation and mineral dissolution/precipitation were calculated by PHREEQC package software. The chemical composition of the water is influenced by the dissolution and/or precipitation processes during the water-rock interaction and by the cationic exchange reactions between groundwater and alluvial sediments. The high content of CO₂ in the water samples suggests that they circulate in a geochemical opened system.

Keywords: aquifer, hydrogeology, hydrochemistry, Hammamet, Tebessa, Algeria

Procedia PDF Downloads 18
8892 The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons

Authors: Premrudee Kanchanapiya, Supachai Songngam, Thanapol Tantisattayakul

Abstract:

Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting.

Keywords: perfluorooctanoic acid, PFOA, coconut shell activated carbons, adsorption, water treatment

Procedia PDF Downloads 143
8891 A Study of Laminar Natural Convection in Annular Spaces between Differentially Heated Horizontal Circular Cylinders Filled with Non-Newtonian Nano Fluids

Authors: Behzad Ahdiharab, Senol Baskaya, Tamer Calisir

Abstract:

Heat exchangers are one of the most widely used systems in factories, refineries etc. In this study, natural convection heat transfer using nano-fluids in between two cylinders is numerically investigated. The inner and outer cylinders are kept at constant temperatures. One of the most important assumptions in the project is that the working fluid is non-Newtonian. In recent years, the use of nano-fluids in industrial applications has increased profoundly. In this study, nano-Newtonian fluids containing metal particles with high heat transfer coefficients have been used. All fluid properties such as homogeneity has been calculated. In the present study, solutions have been obtained under unsteady conditions, base fluid was water, and effects of various parameters on heat transfer have been investigated. These parameters are Rayleigh number (103 < Ra < 106), power-law index (0.6 < n < 1.4), aspect ratio (0 < AR < 0.8), nano-particle composition, horizontal and vertical displacement of the inner cylinder, rotation of the inner cylinder, and volume fraction of nanoparticles. Results such as the internal cylinder average and local Nusselt number variations, contours of temperature, flow lines are presented. The results are also discussed in detail. From the validation study performed it was found that a very good agreement exists between the present results and those from the open literature. It was found out that the heat transfer is always affected by the investigated parameters. However, the degree to which the heat transfer is affected does change in a wide range.

Keywords: heat transfer, circular space, non-Newtonian, nano fluid, computational fluid dynamics.

Procedia PDF Downloads 415
8890 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver

Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar

Abstract:

Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.

Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy

Procedia PDF Downloads 197