Search results for: LMS–learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29624

Search results for: LMS–learning management system

27134 CybeRisk Management in Banks: An Italian Case Study

Authors: E. Cenderelli, E. Bruno, G. Iacoviello, A. Lazzini

Abstract:

The financial sector is exposed to the risk of cyber-attacks like any other industrial sector. Furthermore, the topic of CybeRisk (cyber risk) has become particularly relevant given that Information Technology (IT) attacks have increased drastically in recent years, and cannot be stopped by single organizations requiring a response at international and national level. IT risk is never a matter purely for the IT manager, although he clearly plays a key role. A bank's risk management function requires a thorough understanding of the evolving risks as well as the tools and practical techniques available to address them. Upon the request of European and national legislation regarding CybeRisk in the financial system, banks are therefore called upon to strengthen the operational model for CybeRisk management. This will require an important change with a more intense collaboration with the structures that deal with information security for the development of an ad hoc system for the evaluation and control of this type of risk. The aim of the work is to propose a framework for the management and control of CybeRisk that will bridge the gap in the literature regarding the understanding and consideration of CybeRisk as an integral part of business management. The IT function has a strong relevance in the management of CybeRisk, which is perceived mainly as operational risk, but with a positive tendency on the part of risk management to the identification of CybeRisk assessment methods that are increasingly complete, quantitative and able to better describe the possible impacts on the business. The paper provides answers to the research questions: Is it possible to define a CybeRisk governance structure able to support the comparison between risk and security? How can the relationships between IT assets be integrated into a cyberisk assessment framework to guarantee a system of protection and risks control? From a methodological point of view, this research uses a case study approach. The choice of “Monte dei Paschi di Siena” was determined by the specific features of one of Italy’s biggest lenders. It is chosen to use an intensive research strategy: an in-depth study of reality. The case study methodology is an empirical approach to explore a complex and current phenomenon that develops over time. The use of cases has also the advantage of allowing the deepening of aspects concerning the "how" and "why" of contemporary events, on which the scholar has little control. The research bases on quantitative data and qualitative information obtained through semi-structured interviews of an open-ended nature and questionnaires to directors, members of the audit committee, risk, IT and compliance managers, and those responsible for internal audit function and anti-money laundering. The added value of the paper can be seen in the development of a framework based on a mapping of IT assets from which it is possible to identify their relationships for purposes of a more effective management and control of cyber risk.

Keywords: bank, CybeRisk, information technology, risk management

Procedia PDF Downloads 232
27133 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms

Authors: Julio Vega

Abstract:

Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.

Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node

Procedia PDF Downloads 129
27132 Learning in Multicultural Workspaces: A Case of Aged Care

Authors: Robert John Godby

Abstract:

To be responsive now and in the future, workplaces must address the demands of multicultural teams as they become more common elements of the global labor force. This is especially the case for aged care due to the aging population, industry growth and migrant recruitment. This research identifies influences on and improvements for learning in these environments. Its unique contribution is to illuminate how culturally diverse workplaces can work and learn together more effectively. A mixed-methods approach was used to gather data about this topic in two phases. Firstly, the research methods included a survey of 102 aged care workers around Australia from two multi-site aged care organisations. The questionnaire elicited both quantitative and qualitative data about worker characteristics and perspectives on working and learning in aged care. Secondly, a case study of one aged care worksite was formulated drawing on worksite information and interviews with workers. A review of the literature suggests that learning in multicultural work environments is influenced by three main factors: 1) the individual workers themselves, 2) their interaction with each other and 3) the environment in which they work. There are various accounts of these three factors, how they are manifested and how they lead to a change in workers’ disposition, knowledge, or expertise when confronted with new circumstances. The study has found that a key individual factor influencing learning is cultural background. Their unique view of the world was shown to affect their approach to both their work and co-working. Interactional factors suggest that the high requirement for collaboration in aged care positively supports learning in this context; however, it can be hindered by cultural bias and spoken accent. The study also found that environmental factors, such as disruptions caused by the pandemic, were another key influence. For example, the need to wear face masks hindered the communication needed for workplace learning. This was especially challenging due to the diverse language backgrounds and abilities within the teams. Potential improvements for learning in multicultural aged care work environments were identified. These include more frequent and structured inter-peer learning (e.g. buddying), communication training (e.g. English language usage for both native and non-native speaking workers) and support for cross-cultural habitude (e.g. recognizing and adapting to cultural differences). Workplace learning in cross-cultural aged care environments is an area that is not extensively dealt with in the literature. This study addresses this gap and holds the potential to contribute practical insights to aged care and other diverse industries.

Keywords: cross-cultural learning, learning in aged care, migrant learning, workplace learning

Procedia PDF Downloads 159
27131 Softening Finishing: Teaching and Learning Materials

Authors: C.W. Kan

Abstract:

Softening applied on textile products based on several reasons. First, the synthetic detergent removes natural oils and waxes, thus lose the softness. Second, compensate the harsh handle of resin finishing. Also, imitate natural fibres and improve the comfort of fabric are the reasons to apply softening. There are different types of softeners for softening finishing of textiles, nonionic softener, anionic softener, cationic softener and silicone softener. The aim of this study is to illustrate the proper application of different softeners and their final softening effect in textiles. The results could also provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, softening, textiles, effect

Procedia PDF Downloads 217
27130 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts

Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel

Abstract:

We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.

Keywords: deep-learning approach, object-classes, semantic classification, Arabic

Procedia PDF Downloads 88
27129 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy

Authors: Seyed Vahid Kamal Alavi

Abstract:

Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.

Keywords: multi-hazard risk mapping, risk management, GIS, Italy

Procedia PDF Downloads 371
27128 Integrating Explicit Instruction and Problem-Solving Approaches for Efficient Learning

Authors: Slava Kalyuga

Abstract:

There are two opposing major points of view on the optimal degree of initial instructional guidance that is usually discussed in the literature by the advocates of the corresponding learning approaches. Using unguided or minimally guided problem-solving tasks prior to explicit instruction has been suggested by productive failure and several other instructional theories, whereas an alternative approach - using fully guided worked examples followed by problem solving - has been demonstrated as the most effective strategy within the framework of cognitive load theory. An integrated approach discussed in this paper could combine the above frameworks within a broader theoretical perspective which would allow bringing together their best features and advantages in the design of learning tasks for STEM education. This paper represents a systematic review of the available empirical studies comparing the above alternative sequences of instructional methods to explore effects of several possible moderating factors. The paper concludes that different approaches and instructional sequences should coexist within complex learning environments. Selecting optimal sequences depends on such factors as specific goals of learner activities, types of knowledge to learn, levels of element interactivity (task complexity), and levels of learner prior knowledge. This paper offers an outline of a theoretical framework for the design of complex learning tasks in STEM education that would integrate explicit instruction and inquiry (exploratory, discovery) learning approaches in ways that depend on a set of defined specific factors.

Keywords: cognitive load, explicit instruction, exploratory learning, worked examples

Procedia PDF Downloads 126
27127 Infrastructural Barriers to Engaged Learning in the South Pacific: A Mixed-Methods Study of Cook Islands Nurses' Attitudes towards Health Information Technology

Authors: Jonathan Frank, Michelle Salmona

Abstract:

We conducted quantitative and qualitative analyses of nurses’ perceived ease of use of electronic medical records and telemedicine in the Cook Islands. We examined antecedents of perceived ease of use through the lens of social construction of learning, and cultural diffusion. Our findings confirmed expected linkages between PEOU, attitudes and intentions. Interviews with nurses suggested infrastructural barriers to engaged learning. We discussed managerial implications of our findings, and areas of interest for future research.

Keywords: health information technology, ICT4D, TAM, developing countries

Procedia PDF Downloads 289
27126 Improving Students’ Participation in Group Tasks: Case Study of Adama Science and Technology University

Authors: Fiseha M. Guangul, Annissa Muhammed, Aja O. Chikere

Abstract:

Group task is one method to create the conducive environment for the active teaching-learning process. Performing group task with active involvement of students will benefit the students in many ways. However, in most cases all students do not participate actively in the group task, and hence the intended benefits are not acquired. This paper presents the improvements of students’ participation in the group task and learning from the group task by introducing different techniques to enhance students’ participation. For the purpose of this research Carpentry and Joinery II (WT-392) course from Wood Technology Department at Adama Science and Technology University was selected, and five groups were formed. Ten group tasks were prepared and the first five group tasks were distributed to the five groups in the first day without introducing the techniques that are used to enhance participation of students in the group task. On another day, the other five group tasks were distributed to the same groups and various techniques were introduced to enhance students’ participation in the group task. The improvements of students’ learning from the group task after the implementation of the techniques. After implementing the techniques the evaluation showed that significant improvements were obtained in the students’ participation and learning from the group task.

Keywords: group task, students participation, active learning, the evaluation method

Procedia PDF Downloads 214
27125 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marylin Wolf

Abstract:

This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver

Procedia PDF Downloads 390
27124 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
27123 Navigating Disruption: Key Principles and Innovations in Modern Management for Organizational Success

Authors: Ahmad Haidar

Abstract:

This research paper investigates the concept of modern management, concentrating on the development of managerial practices and the adoption of innovative strategies in response to the fast-changing business landscape caused by Artificial Intelligence (AI). The study begins by examining the historical context of management theories, tracing the progression from classical to contemporary models, and identifying key drivers of change. Through a comprehensive review of existing literature and case studies, this paper provides valuable insights into the principles and practices of modern management, offering a roadmap for organizations aiming to navigate the complexities of the contemporary business world. The paper examines the growing role of digital technology in modern management, focusing on incorporating AI, machine learning, and data analytics to streamline operations and facilitate informed decision-making. Moreover, the research highlights the emergence of new principles, such as adaptability, flexibility, public participation, trust, transparency, and digital mindset, as crucial components of modern management. Also, the role of business leaders is investigated by studying contemporary leadership styles, such as transformational, situational, and servant leadership, emphasizing the significance of emotional intelligence, empathy, and collaboration in fostering a healthy organizational culture. Furthermore, the research delves into the crucial role of environmental sustainability, corporate social responsibility (CSR), and corporate digital responsibility (CDR). Organizations strive to balance economic growth with ethical considerations and long-term viability. The primary research question for this study is: "What are the key principles, practices, and innovations that define modern management, and how can organizations effectively implement these strategies to thrive in the rapidly changing business landscape?." The research contributes to a comprehensive understanding of modern management by examining its historical context, the impact of digital technologies, the importance of contemporary leadership styles, and the role of CSR and CDR in today's business landscape.

Keywords: modern management, digital technology, leadership styles, adaptability, innovation, corporate social responsibility, organizational success, corporate digital responsibility

Procedia PDF Downloads 67
27122 Examining French Teachers’ Teaching and Learning Approaches in Some Selected Junior High Schools in Ghana

Authors: Paul Koffitse Agobia

Abstract:

In 2020 the Ministry of Education in Ghana and the National Council for Curriculum and Assessment (NaCCA) rolled out a new curriculum, Common Core Programme (CCP) for Basic 7 to 10, that lays emphasis on character building and values which are important to the Ghanaian society by providing education that will produce character–minded learners, with problem solving skills, who can play active roles in dealing with the increasing challenges facing Ghana and the global society. Therefore, learning and teaching approaches that prioritise the use of digital learning resources and active learning are recommended. The new challenge facing Ghanaian teachers is the ability to use new technologies together with the appropriate content pedagogical knowledge to help learners develop, aside the communication skills in French, the essential 21st century skills as recommended in the new curriculum. This article focusses on the pedagogical approaches that are recommended by NaCCA. The study seeks to examine French language teachers’ understanding of the recommended pedagogical approaches and how they use digital learning resources in class to foster the development of these essential skills and values. 54 respondents, comprised 30 teachers and 24 head teachers, were selected in 6 Junior High schools in rural districts (both private and public) and 6 from Junior High schools in an urban setting. The schools were selected in three regions: Volta, Central and Western regions. A class observation checklist and an interview guide were used to collect data for the study. The study reveals that some teachers adopt teaching techniques that do not promote active learning. They demonstrate little understanding of the core competences and values, therefore, fail to integrate them in their lessons. However, some other teachers, despite their lack of understanding of learning and teaching philosophies, adopted techniques that can help learners develop some of the core competences and values. In most schools, digital learning resources are not utilized, though teachers have smartphones or laptops.

Keywords: active learning, core competences, digital learning resources, pedagogical approach, values.

Procedia PDF Downloads 76
27121 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
27120 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 16
27119 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510
27118 Viability of Irrigation Water Conservation Practices in the Low Desert of California

Authors: Ali Montazar

Abstract:

California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase.

Keywords: automated surface irrigation, deficit irrigation, low desert of California, sprinkler irrigation, sub-surface drip irrigation, tail-water recovery system

Procedia PDF Downloads 158
27117 Understanding Success Factors of an Information Security Management System Plan Phase Self-Implementation

Authors: Nurazean Maarop, Noorjan Mohd Mustapha, Rasimah Yusoff, Roslina Ibrahim, Norziha Megat Mohd Zainuddin

Abstract:

The goal of this study is to identify success factors that could influence the ISMS self-implementation in government sector from qualitative perspective. This study is based on a case study in one of the Malaysian government agency. Semi-structured interviews involving five key informants were conducted to examine factors addressed in the conceptual framework. Subsequently, thematic analysis was executed to describe the influence of each factor on the success implementation of ISMS. The result of this study indicates that management commitment, implementer commitment and implementer competency are part of the success factors for ISMS self-implementation in Malaysian Government Sector.

Keywords: ISMS success factors, IT project management, IS success, information security

Procedia PDF Downloads 315
27116 E-Immediacy in Saudi Higher Education Context: Female Students’ Perspectives

Authors: Samar Alharbi, Yota Dimitriadi

Abstract:

The literature on educational technology in Saudi Arabia reveals female learners’ unwillingness to study fully online courses in higher education despite the fact that Saudi universities have offered a variety of online degree programmes to undergraduate students in many regions of the country. The root causes keeping female students from successfully learning in online environments are limited social interaction, lack of motivation and difficulty with the use of e-learning platforms. E-immediacy remains an important method of online teaching to enhance students’ interaction and support their online learning. This study explored Saudi female students’ perceptions, as well as the experiences of lecturers’ immediacy behaviours in online environments, who participate in fully online courses using Blackboard at a Saudi university. Data were collected through interviews with focus groups. The three focus groups included five to seven students each. The female participants were asked about lecturers’ e-immediacy behaviours and which e-immediacy behaviours were important for an effective learning environment. A thematic analysis of the data revealed three main themes: the encouragement of student interaction, the incorporation of social media and addressing the needs of students. These findings provide lecturers with insights into instructional designs and strategies that can be adopted in using e-immediacy in effective ways, thus improving female learners’ interactions as well as their online learning experiences.

Keywords: e-learning, female students, higher education, immediacy

Procedia PDF Downloads 348
27115 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
27114 Proposing a Strategic Management Maturity Model for Continues Innovation

Authors: Ferhat Demir

Abstract:

Even if strategic management is highly critical for all types of organizations, only a few maturity models have been proposed in business literature for the area of strategic management activities. This paper updates previous studies and presents a new conceptual model for assessing the maturity of strategic management in any organization. Strategic management maturity model (S-3M) is basically composed of 6 maturity levels with 7 dimensions. The biggest contribution of S-3M is to put innovation into agenda of strategic management. The main objective of this study is to propose a model to align innovation with business strategies. This paper suggests that innovation (breakthrough new products/services and business models) is the only way of creating sustainable growth and strategy studies cannot ignore this aspect. Maturity models should embrace innovation to respond dynamic business environment and rapidly changing customer behaviours.

Keywords: strategic management, innovation, business model, maturity model

Procedia PDF Downloads 194
27113 The Effects of Drill and Practice Courseware on Students’ Achievement and Motivation in Learning English

Authors: Y. T. Gee, I. N. Umar

Abstract:

Students’ achievement and motivation in learning English in Malaysia is a worrying trend as it is lagging behind several other countries in Asia. Thus, necessary actions have to be taken by the parties concerned to overcome this problem. The purpose of this research was to study the effects of drill and practice courseware on students’ achievement and motivation in learning English language. A multimedia courseware was developed for this purpose. The independent variable was the drill and practice courseware while the dependent variables were the students’ achievement and motivation. Their achievement was measured using pre-test and post-test scores, while motivation was measured using a questionnaire adapted from Keller’s (1979) Instructional Materials Motivation Scale. A total of 60 students from three vernacular primary schools in a northern state in Malaysia were randomly selected in this study. The findings indicate: (1) a significant difference between the students’ pre-test and post-test scores after using the courseware, (2) no significant difference in the achievement score between male and female students after using the courseware, (3) a significant difference in motivation score between the female and the male students, and (4) while the female students scored significantly higher than the male students in the aspects of relevance, confidence and satisfaction, no significant difference in terms of attention was observed between them. Overall, the findings clearly indicate that although the female students are significantly more motivated than their male students, they are equally good in terms of achievement after learning from the courseware. Through this study, the drill and practice courseware is proven to influence the students’ learning and motivation.

Keywords: courseware, drill and practice, English learning, motivation

Procedia PDF Downloads 307
27112 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 257
27111 Foreign Language Reading Comprehenmsion and the Linguistic Intervention Program

Authors: Silvia Hvozdíková, Eva Stranovská

Abstract:

The purpose of the article is to discuss the results of the research conducted during the period of two semesters paying attention to selected factors of foreign language reading comprehension through the means of Linguistic Intervention Program. The Linguistic Intervention Program was designed for the purpose of the current research. It refers to such method of foreign language teaching which emphasized active social learning, creative drama strategies, self-directed learning. The research sample consisted of 360 respondents, foreign language learners ranging from 13 – 17 years of age. Specifically designed questionnaire and a standardized foreign language reading comprehension tests were applied to serve the purpose. The outcomes of the research recorded significant results towards significant relationship between selected elements of the Linguistic Intervention Program and the academic achievements in the factors of reading comprehension.

Keywords: foreign language learning, linguistic intervention program, reading comprehension, social learning

Procedia PDF Downloads 119
27110 Locating the Best Place for Earthquake Refugee Camps by OpenSource Software: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi

Abstract:

Iran is one of the regions which are most prone for earthquakes annually having a large number of financial and mortality and financial losses. Every year around the world, a large number of people lose their home and life due to natural disasters such as earthquakes. It is necessary to provide and specify some suitable places for settling the homeless people before the occurrence of the earthquake, one of the most important factors in crisis planning and management. Some of the natural disasters can be Modeling and shown by Geospatial Information System (GIS). By using GIS, it would be possible to manage the spatial data and reach several goals by making use of the analyses existing in it. GIS has a determining role in disaster management because it can determine the best places for temporary resettling after such a disaster. In this research QuantumGIS software is used that It is an OpenSource software so that easy to access codes and It is also free. In this system, AHP method is used as decision model and to locate the best places for temporary resettling, is done based on the related organizations criteria with their weights and buffers. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Eventually, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QuantumGIS platform.

Keywords: disaster management, temporary resettlement, earthquake, QuantumGIS

Procedia PDF Downloads 398
27109 Mitigation of Profitable Problems: Level of Hotel Quality Management Program and Environmental Management Practices Towards Performance

Authors: Siti Anis Nadia Abu Bakar, Vani Tanggamani

Abstract:

Over recent years, the quality and environmental management practices are the necessary tasks in hospitality industry in order to provide high quality services, a comfortable and safe environment for occupants as well as innovative nature and shareholders' satisfaction, its environmental and social added value sustainable. Numerous studies have observed and measured quality management program (QMProg) and environmental management practices (EMPrac) independently. This paper analyzed the level of QMProg, and EMPrac in hospitality industry, particularly on hotel performance, specifically in the context of Malaysia as hotel industry in Malaysia has contributed tremendously to the development in the Malaysia tourism industry.The research objectives are; (1) to analyze how the level of QMProg influences on firm performance; (2) to investigate the level of EMPrac and its influence on firm performance. This paper contributes to the literature by providing added-value to the service industry strategic decision-making processes by helping to predict the varying impacts of positive and negative corporate social responsibility (CSR) activities on financial performance in their respective industries. Further, this paper also contributes to develop more applicable CSR strategies. As a matter of fact, the findings of this paper has contributed towards an integrated management system that will assist a firm in implementation of their environmental strategy by creating a higher level of accountability for environmental performance. The best results in environmental systems have instigated managers to explore more options when dealing with problems, especially problems involving the reputation of their hotel. In conclusion, the results of the study infer that the best CSR strategies of the quality and environmental management practices influences hotel performance.

Keywords: corporate social responsibility (CSR), environmental management practices (EMPrac), performance (PERF), quality management program (QMProg)

Procedia PDF Downloads 374
27108 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: neural network, backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 498
27107 An Analytical Study of Organizational Implication in EFL Writing Experienced by Iranian Students with Learning Difficulties

Authors: Yoones Tavoosy

Abstract:

This present study concentrates on the organizational implication the Iranian students with learning difficulties (LD) experience when they write an English essay. Particularly, the present study aims at exploring students' structural problems in EFL essay writing. A mixed method research design was employed including a questionnaire and a semi-structured in-depth interview. Technical Data Analysis of findings exposed that students experience a number of difficulties in the structure of EFL essay writing. Discussion and implications of these findings are presented respectively.

Keywords: Iranian students, learning difficulties, organizational implication, writing

Procedia PDF Downloads 222
27106 Building a Transformative Continuing Professional Development Experience for Educators through a Principle-Based, Technological-Driven Knowledge Building Approach: A Case Study of a Professional Learning Team in Secondary Education

Authors: Melvin Chan, Chew Lee Teo

Abstract:

There has been a growing emphasis in elevating the teachers’ proficiency and competencies through continuing professional development (CPD) opportunities. In this era of a Volatile, Uncertain, Complex, Ambiguous (VUCA) world, teachers are expected to be collaborative designers, critical thinkers and creative builders. However, many of the CPD structures are still revolving in the model of transmission, which stands in contradiction to the cultivation of future-ready teachers for the innovative world of emerging technologies. This article puts forward the framing of CPD through a Principle-Based, Technological-Driven Knowledge Building Approach grounded in the essence of andragogy and progressive learning theories where growth is best exemplified through an authentic immersion in a social/community experience-based setting. Putting this Knowledge Building Professional Development Model (KBPDM) in operation via a Professional Learning Team (PLT) situated in a Secondary School in Singapore, research findings reveal that the intervention has led to a fundamental change in the learning paradigm of the teachers, henceforth equipping and empowering them successfully in their pedagogical design and practices for a 21st century classroom experience. This article concludes with the possibility in leveraging the Learning Analytics to deepen the CPD experiences for educators.

Keywords: continual professional development, knowledge building, learning paradigm, principle-based

Procedia PDF Downloads 130
27105 Evaluating the Effectiveness of the Use of Scharmer’s Theory-U Model in Action-Learning-Based Leadership Development Program

Authors: Donald C. Lantu, Henndy Ginting, M. Yorga Permana, Dany M. A. Ramdlany

Abstract:

We constructed a training program for top-talents of a Bank with Scharmer Theory-U as the model. In this training program, we implemented the action learning perspective, as it is claimed to be the most effective one currently available. In the process, participants were encouraged to be more involved, especially compared to traditional lecturing. The goal of this study is to assess the effectiveness of this particular training. The program consists of six days non-residential workshop within two months. Between each workshop, the participants were involved in the works of action learning group. They were challenged by dealing with the real problem related to their tasks at work. The participants of the program were 30 best talents who were chosen according to their yearly performance. Using paired difference statistical test in the behavioral assessment, we found that the training was not effective to increase participants’ leadership competencies. For the future development program, we suggested to modify the goals of the program toward the next stage of development.

Keywords: action learning, behavior, leadership development, Theory-U

Procedia PDF Downloads 195