Search results for: protein structure classification
9317 Accelerated Aging of Photopolymeric Material Used in Flexography
Authors: S. Mahovic Poljacek, T. Tomasegovic, T. Cigula, D. Donevski, R. Szentgyörgyvölgyi, S. Jakovljevic
Abstract:
In this paper, a degradation of the photopolymeric material (PhPM), used as printing plate in the flexography reproduction technique, caused by accelerated aging has been observed. Since the basis process for production of printing plates from the PhPM is a radical cross-linking process caused by exposing to UV wavelengths, the assumption was that improper storage or irregular handling of the PhPM plate can change the surface and structure characteristics of the plates. Results have shown that the aging process causes degradation in the structure and changes in the surface of the PhPM printing plate.Keywords: aging process, artificial treatment, flexography, photopolymeric material (PhPM)
Procedia PDF Downloads 3499316 The Effect of the COVID-19 on Alzheimer’s Disease
Authors: Ayşe Defne Öz, Özlem Bozkurt
Abstract:
Alzheimer's Disease (AD) is counted as one of the most important global health problems and the main cause of dementia. The term dementia refers to a wide spectrum of disorders characterized by global, chronic, and generally irreversible cognitive deterioration. It is estimated that %60 % to 80 of the cases of dementia are because of AD. Alzheimer's is a slowly progressive brain disease. The reason for AD is unknown to the author's best knowledge, yet it is one of the topics that is most researched. AD shows the histopathologically abnormal accumulation of the protein beta-amyloid (plague) outside neurons and twisted strands of the protein tau (tangles) inside neurons in the brain. These changes are accompanied by damage to the brain tissue and the death of neurons. AD causes people to have difficulty remembering names or conversations. Some of the later symptoms are difficulty in talking and walking. Alzheimer's Disease is elevated by the illness and mortality of COVID-19. COVID-19 has affected many lives globally and had profound effects on human lives. COVID-19 is caused by SARS-CoV-2, which is a virus that attacks the respiratory and central nervous system and has neuroinvasive potential. More than %80 of COVID-19 patients have ageusia or anosmia, representing the pathognomic features of the disease. Patients with dementia are frail, and with the COVID-19 pandemic, including isolation, cognitive decline may exacerbate. Furthermore, patients with AD can be unable to follow the directions, such as covering their mouth and nose while coughing and can live in nursing homes which makes them more open to being infected. As COVID-19 is highly infectious and its management requires isolation and quarantine, the need for caregivers for AD management conflicts with that of COVID-19 and adds an extra burden on AD patients, caregivers, families, society, and the economy. Due to the entry of SARS-CoV-2 into the central nervous system, inflammation caused by COVID-19, prolonged hospitalization, and delirium, it has been reported that COVID-19 causes many neurological disorders and predisposition to AD.Keywords: Alzheimer's disease, COVID-19, dementia, SARS-CoV-2
Procedia PDF Downloads 769315 An Introduction to Giulia Annalinda Neglia Viewpoint on Morphology of the Islamic City Using Written Content Analysis Approach
Authors: Mohammad Saber Eslamlou
Abstract:
Morphology of Islamic cities has been extensively studied by researchers of Islamic cities and different theories could be found about it. In this regard, there exist much difference in method of analysis, classification, recognition, confrontation and comparative method of urban morphology. The present paper aims to examine the previous methods, approaches and insights and that how Dr. Giulia Annalinda Neglia dealt with the analysis of morphology of Islamic cities. Neglia is assistant professor in University of Bari, Italy (UNIBA) who has published numerous papers and books on Islamic cities. I introduce her works in the field of morphology of Islamic cities. And then, her thoughts, insights and research methodologies are presented and analyzed in critical perspective. This is a qualitative research on her written works, which have been classified in three major categories. The first category consists mainly of her works on morphology and physical shape of Islamic cities. The results of her works’ review suggest that she has used Moratoria typology in investigating morphology of Islamic cities. Moreover, overall structure of the cities under investigation is often described linear; however, she’s against to define a single framework for the recognition of morphology in Islamic cities. She states that ‘to understand the physical complexity and irregularities in Islamic cities, it is necessary to study the urban fabric by typology method, focusing on transformation processes of the buildings’ form and their surrounding open spaces’ and she believes that fabric of each region in the city follows from the principles of an specific period or urban pattern, in particular, Hellenistic and Roman structures. Furthermore, she believes that it is impossible to understand the morphology of a city without taking into account the obvious and hidden developments associated with it, because form of building and their surrounding open spaces are written history of the city.Keywords: city, Islamic city, Giulia Annalinda Neglia, morphology
Procedia PDF Downloads 979314 Modeling of Glycine Transporters in Mammalian Using the Probability Approach
Authors: K. S. Zaytsev, Y. R. Nartsissov
Abstract:
Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning
Procedia PDF Downloads 1199313 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan
Authors: Usman Ahmed Khan
Abstract:
Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.Keywords: LST, LULC, isodata, urbanization
Procedia PDF Downloads 1009312 On the Stability Exact Analysis of Tall Buildings with Outrigger System
Authors: Mahrooz Abed, Amir R. Masoodi
Abstract:
Many structural lateral systems are used in tall buildings such as rigid frames, braced frames, shear walls, tubular structures and core structures. Some efficient structures for drift control and base moment reduction in tall buildings is outrigger and belt truss systems. When adopting outrigger beams in building design, their location should be in an optimum position for an economical design. A range of different strategies has been employed to identify the optimum locations of these outrigger beams under wind load. However, there is an absence of scientific research or case studies dealing with optimum outrigger location using buckling analysis. In this paper, one outrigger system is considered at the middle of height of structure. The optimum location of outrigger will be found based on the buckling load limitation. The core of structure is modeled by a clamped tapered beam. The exact stiffness matrix of tapered beam is formulated based on the Euler-Bernoulli theory. Finally, based on the buckling load of structure, the optimal location of outrigger will be found.Keywords: tall buildings, outrigger system, buckling load, second-order effects, Euler-Bernoulli beam theory
Procedia PDF Downloads 3969311 Temperature and Substrate Orientation Effects on the Thermal Stability of Graphene Sheet Attached on the Si Surface
Authors: Wen-Jay Lee, Kuo-Ning Chiang
Abstract:
The graphene binding with silicon substrate has apparently Schottky barriers property, which can be used in the application of solar cell and light source. Because graphene has only one atom layer, the atomistic structure of graphene binding with the silicon surface plays an important role to affect the properties of graphene. In this work, temperature effect on the morphology of graphene sheet attached on different crystal planes of silicon substrates are investigated by Molecular dynamics (MD) (LAMMPS, developed by Sandia National Laboratories). The results show that the covered graphene sheet would cause the structural deformation of the surface Si atoms of stubtrate. To achieve a stable state in the binding process, the surface Si atoms would adjust their position and fit the honeycomb structure of graphene after the graphene attaches to the Si surface. The height contour of graphene on different plane of silicon surfaces presents different pattern, leading the local residual stress at the interface. Due to the high density of dangling bond on the Si (111)7x7 surface, the surface of Si(111)7x7 is not matching with the graphene so well in contrast with Si(100)2x1and Si(111)2x1. Si(111)7x7 is found that only partial silicon adatoms are rearranged on surface after the attachment when the temperature is lower than 200K, As the temperature gradually increases, the deformation of surface structure becomes significant, as well as the residue stress. With increasing temperature till the 815K, the graphene sheet begins to destroy and mixes with the silicon atoms. For the Si(100)2x1 and Si(111)2x1, the silicon surface structure keep its structural arrangement with a higher temperature. With increasing temperature, the residual stress gradually decrease till a critical temperatures. When the temperature is higher than the critical temperature, the residual stress gradually increases and the structural deformation is found on the surface of the Si substrates.Keywords: molecular dynamics, graphene, silicon, Schottky barriers, interface
Procedia PDF Downloads 3209310 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 1379309 Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA
Authors: Leonard Lipovich, Pattaraporn Thepsuwan, Anton-Scott Goustin, Juan Cai, Donghong Ju, James B. Brown
Abstract:
Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL.Keywords: genetic code, lncRNA, long non-coding RNA, mass spectrometry, proteogenomics, ribo-seq, ribosome, RNAseq
Procedia PDF Downloads 2359308 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor
Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh
Abstract:
Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging
Procedia PDF Downloads 2609307 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 889306 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway
Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam
Abstract:
Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide
Procedia PDF Downloads 1549305 Catalytic Cracking of Hydrocarbon over Zeolite Based Catalysts
Authors: Debdut Roy, Vidyasagar Guggilla
Abstract:
In this research, we highlight our exploratory work on modified zeolite based catalysts for catalytic cracking of hydrocarbons for production of light olefin i.e. ethylene and propylene. The work is focused on understanding the catalyst structure and activity correlation. Catalysts are characterized by surface area and pore size distribution analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), Temperature Programmed Desorption (TPD) of ammonia, pyridine Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric Analysis (TGA) and correlated with the catalytic activity. It is observed that the yield of lighter olefins increases with increase of Bronsted acid strength.Keywords: catalytic cracking, zeolite, propylene, structure-activity correlation
Procedia PDF Downloads 2189304 Nanoparticles Activated Inflammasome Lead to Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma
Authors: Pureun-Haneul Lee, Byeong-Gon Kim, Sun-Hye Lee, An-Soo Jang
Abstract:
Background: Nanoparticles may pose adverse health effects due to particulate matter inhalation. Nanoparticle exposure induces cell and tissue damage, causing local and systemic inflammatory responses. The inflammasome is a major regulator of inflammation through its activation of pro-caspase-1, which cleaves pro-interleukin-1β (IL-1β) into its mature form and may signal acute and chronic immune responses to nanoparticles. Objective: The aim of the study was to identify whether nanoparticles exaggerates inflammasome pathway leading to airway inflammation and hyperresponsiveness in an allergic mice model of asthma. Methods: Mice were treated with saline (sham), OVA-sensitized and challenged (OVA), or titanium dioxide nanoparticles. Lung interleukin 1 beta (IL-1β), interleukin 18 (IL-18), NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and caspase-1 levels were assessed with Western Blot. Caspase-1 was checked by immunohistochemical staining. Reactive oxygen species were measured for the marker 8-isoprostane and carbonyl by ELISA. Results: Airway inflammation and hyperresponsiveness increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. TiO2 nanoparticles treatment increased IL-1β and IL-18 protein expression in OVA-sensitized/challenged mice. TiO2 nanoparticles augmented the expression of NLRP3 and caspase-1 leading to the formation of an active caspase-1 in the lung. Lung caspase-1 expression was increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. Reactive oxygen species was increased in OVA-sensitized/challenged mice and in OVA-sensitized/challenged plus TiO2 exposed mice. Conclusion: Our data demonstrate that inflammasome pathway activates in asthmatic lungs following nanoparticles exposure, suggesting that targeting the inflammasome may help control nanoparticles-induced airway inflammation and responsiveness.Keywords: bronchial asthma, inflammation, inflammasome, nanoparticles
Procedia PDF Downloads 3759303 Wear and Mechanical Properties of Nodular Iron Modified with Copper
Authors: J. Ramos, V. Gil, A. F. Torres
Abstract:
The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear
Procedia PDF Downloads 3859302 Effect of Formulation Compositions and Freezing Rates on the Conformational Changes of Influenza Virus Haemagglutinin (HA)
Authors: Thanh Phuong Doan, Narueporn Sutanthavibul
Abstract:
The influence of freezing cycle on influenza haemagglutinin (HA) conformational stability was investigated in terms of freezing rates and formulation compositions. The results showed that appropriate HA conformation could be evaluated using circular dichroism (CD) spectroscopy with HA concentration of greater than 0.09 mg/ml. The intermediate freezing rate of approximately 1.0oC/min preserved the original HA conformation better than at slow freezing rate (0.5oC/min) and rapid freezing rate (2.6oC/min). The changes in CD spectra of the secondary HA structure were more pronounced than those of the tertiary HA structure during the evaluation. Additionally, the formulations, which resulted in the highest conformational stability were found to have sucrose present in the composition. As opposed to when only glycine was used, the stability of HA conformation was poor.Keywords: freezing, haemagglutinin, influenza, circular dichroism
Procedia PDF Downloads 3959301 A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures
Authors: Abdul Hakim Chikho
Abstract:
Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified.Keywords: column ultimate load, semi rigid connections, steel column, infill panel, steel structure
Procedia PDF Downloads 1789300 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong
Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong
Abstract:
Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island
Procedia PDF Downloads 739299 First Principle study of Electronic Structure of Silicene Doped with Galium
Authors: Mauludi Ariesto Pamungkas, Wafa Maftuhin
Abstract:
Gallium with three outer electrons commonly are used as dopants of silicon to make it P type and N type semiconductor respectively. Silicene, one-atom-thick silicon layer is one of emerging two dimension materials after the success of graphene. The effects of Gallium doping on electronic structure of silicine are investigated by using first principle calculation based on Density Functional Theory (DFT) calculation and norm conserving pseudopotential method implemented in ABINIT code. Bandstructure of Pristine silicene is similar to that of graphene. Effect of Ga doping on bandstructure of silicene depend on the position of Ga adatom on siliceneKeywords: silicene, effects of Gallium doping, Density Functional Theory (DFT), graphene
Procedia PDF Downloads 4339298 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 939297 Speech Disorders as Predictors of Social Participation of Children with Cerebral Palsy in the Primary Schools of the Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić–Jovanović, Srećko Potić, Sanja Tomić
Abstract:
The name cerebral palsy comes from the word cerebrum, which means the brain and the word palsy, which means seizure, and essentially refers to the movement disorder. In the clinical picture of cerebral palsy, basic neuromotor disorders are associated with other various disorders: behavioural, intellectual, speech, sensory, epileptic seizures, and bone and joint deformities. Motor speech disorders are among the most common difficulties present in people with cerebral palsy. Social participation represents an interaction between an individual and their social environment. Quality of social participation of the students with cerebral palsy at school is an important indicator of their successful participation in adulthood. One of the most important skills for the undisturbed social participation is ability of good communication. The aim of the study was to determine relation between social participation of students with cerebral palsy and presence of their speech impairment in primary schools in the Czech Republic. The study was performed in the Czech Republic in mainstream schools and schools established for the pupils with special education needs. We analysed 75 children with cerebral palsy aged between six and twelve years attending up to sixth grade by using the first and the third part of the school function assessment questionnaire as the main instrument. The other instrument we used in the research is the Gross motor function classification system–five–level classification system, which measures degree of motor functions of children and youth with cerebral palsy. Funding for this study was provided by the Grant Agency of Charles University in Prague.Keywords: cerebral palsy, social participation, speech disorders, The Czech Republic, the school function assessment
Procedia PDF Downloads 2859296 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat
Authors: Rahul Patel
Abstract:
Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity
Procedia PDF Downloads 749295 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 1319294 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs
Abstract:
Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC
Procedia PDF Downloads 3619293 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure
Abstract:
With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure
Procedia PDF Downloads 2079292 Response of Grower Turkeys to Diets Containing Moringa oleifera Leaf Meal in a Tropical Environment
Authors: Augustine O. Ani, Ifeyinwa E. Ezemagu, Eunice A. Akuru
Abstract:
A seven-week study was conducted to evaluate the response of grower turkeys to varying dietary levels of Moringa oleifera leaf meal (MOLM) in a humid tropical environment. A total of 90 twelve weeks old male and female grower turkeys were randomly divided into five groups of 18 birds each in a completely randomized design (CRD) and assigned to five caloric (2.57-2.60 Mcal/kg ME) and isonitrogenous (19.95% crude protein) diets containing five levels (0, 15, 20, 25 and 30%) of MOLM, respectively. Each treatment was replicated three times with 6 birds per replicate housed in a deep litter pen of fresh wood shavings measuring 1.50m x 1.50m. Feed and water were provided to the birds' ad libitum. Parameters measured were: final live weight (FLW) daily weight gain (DWG), daily feed intake (DFI), feed conversion ratio (FCR), protein efficiency ratio (PER), packed cell volume (PCV), haemoglobin concentration (Hb), red blood cell (RBC) count, white blood cell (WBC) count, mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC), feed cost / kg weight gain and apparent nutrient retention. Results showed that grower turkeys fed 20% MOLM diet had significantly (p < 0.05) higher FLW and DWG values (4410.30 g and 34.49 g, respectively) and higher DM and NFE retention values (67.28 and 58.12%, respectively) than turkeys fed other MOLM diets. Feed cost per kg gain decreased significantly (p < 0.05) with increasing levels of MOLM in the diets. The PCV, Hb, WBC, MCV, MCH and MCHC values of grower turkeys fed 20% MOLM diet were significantly (p < 0.05) higher than those of grower turkeys fed other diets. It was concluded that a diet containing 20% MOLM is adequate for the normal growth of grower turkeys in the tropics.Keywords: Diets, grower turkeys, Moringa oleifera leaf meal, response, tropical environment
Procedia PDF Downloads 1449291 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine
Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao
Abstract:
The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)
Procedia PDF Downloads 3479290 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning
Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park
Abstract:
The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement
Procedia PDF Downloads 2359289 Anti-Diarrheal Activity of Extracts Kedondong Leaf in Mice Balb/C Strain Males in Vivo
Authors: Johanrik, Arini Apriliani, Fikri Haikal, Dias Yuca, Muhammad Abdul Latif, Edijanti Goenarwo, Nurita Pratama Sari
Abstract:
Diarrhea is one of the leading causes of morbidity and mortality in many countries, as well as responsible for the deaths of millions of people each year. Previous research showed that the leaves, bark, and root bark of kedondong contains saponins, tannins, and flavonoids. Tannins have anti-diarrheal effects that work as the freeze of protein/astringent, and may inhibit the secretion of chloride over the tannate bonding between protein in the intestines. Chemical compounds of flavonoids also have an effect as anti-diarrheal block receptors Cl ˉ in intestinal thus reducing the secretion of Cl ˉ to the intestinal lume .This research aims to know the anti-diarrheal activity of extracts kedondong leaf in mice Balb/C strain males in vivo. This research also proves kedondong leaves as an anti-diarrhea through trial efficacy of kedondong leaves as antisekretori and antimotilitas. This research using post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. If the data obtained homogenous then using ANOVA test. This research using ethanolic extracts kedondong leaf 200, 400 and 800 mg/kgBW to prove there is anti-diarrhea it makes into six treatment groups, for anti-secretory it makes into five treatment groups and anti-motility became five treatment groups. The result showed dose of ethanolic extracts kedondong leaf 800 mg/kgBW have significant value (p<0.005). The conclusion from this extracts kedondong leaf research 800 mg/kgBW have pharmacological effects as antidiarrhea on Balb/C strain male mice with a mechanism of action as anti-secretory and anti-motility.Keywords: anti-diarrhea, anti-secretory, anti-motility, kedondong leaf
Procedia PDF Downloads 5089288 Effect of Cardio-Specific Overexpression of MUL1, a Mitochondrial Protein on Myocardial Function
Authors: Ximena Calle, Plinio Cantero-López, Felipe Muñoz-Córdova, Mayarling-Francisca Troncoso, Sergio Lavandero, Valentina Parra
Abstract:
MUL1, a mitochondrial E3 ubiquitin ligase anchored to the outer mitochondrial membrane, is highly expressed in the heart. MUL1 is involved in multiple biological pathways associated with mitochondrial dynamics. Increased MUL1 affects the balance between fission and fusion, affecting mitochondrial function, which plays a crucial role in myocardial function. Therefore, it is interesting to evaluate the effect of cardiac-specific overexpression of MUL1 on myocardial function. Aim: To determine heart functionality in a mouse model with cardio-specific overexpression MUL1 protein. Methods and Results: Male C57BL/Tg transgenic mice with cardiomyocyte-specific overexpression of MUL1 (n=10) and control (n=4) were evaluated at 12, 27, and 35 weeks of age. Glucose tolerance curve determination was performed after a 6-hours fast to assess metabolic capacity, treadmill test, and systolic, and diastolic pressure was evaluated by the mouse tail-cuff blood pressure system equipment. The result showed no glucose tolerance curve, and the treadmill test demonstrated no significant changes between groups. However, substantial changes in diastolic function were observed by ultrasound and determination of cardiac hypertrophy proteins by western blot. Conclusions: Cardio-specific overexpression of MUL1 in mice without any treatment affects diastolic cardiac function, thus showing the important role contributed by MUL1 in the heart. Future research should evaluate the effect of cardiomyocyte-specific overexpression of MUL1 in pathological conditions such as a high-fat diet is one of the main risk factors for cardiovascular disease.Keywords: diastolic dysfunction, hypertrophy cardiac, mitochondrial E3 ubiquitin ligase 1, MUL1
Procedia PDF Downloads 74