Search results for: fiber shape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3434

Search results for: fiber shape

974 Shear Stress and Effective Structural Stress ‎Fields of an Atherosclerotic Coronary Artery

Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis

Abstract:

A three-dimensional numerical model of an atherosclerotic coronary ‎artery is developed for the determination of high-risk situation and ‎hence heart attack prediction. Employing the finite element method ‎‎(FEM) using ANSYS, fluid-structure interaction (FSI) model of the ‎artery is constructed to determine the shear stress distribution as well ‎as the von Mises stress field. A flexible model for an atherosclerotic ‎coronary artery conveying pulsatile blood is developed incorporating ‎three-dimensionality, artery’s tapered shape via a linear function for ‎artery wall distribution, motion of the artery, blood viscosity via the ‎non-Newtonian flow theory, blood pulsation via use of one-period ‎heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity ‎via the Prony series shear relaxation scheme, and micro-calcification ‎inside the plaque. The material properties used to relate the stress field ‎to the strain field have been extracted from clinical data from previous ‎in-vitro studies. The determined stress fields has potential to be used as ‎a predictive tool for plaque rupture and dissection.‎ The results show that stress concentration due to micro-calcification ‎increases the von Mises stress significantly; chance of developing a ‎crack inside the plaque increases. Moreover, the blood pulsation varies ‎the stress distribution substantially for some cases.‎

Keywords: atherosclerosis, fluid-structure interaction‎, coronary arteries‎, pulsatile flow

Procedia PDF Downloads 172
973 Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet

Authors: Soumendu Monia, Vaibhav Jain, Hrishikesh Jugade, Manashi Adhikary, Goutam Mukhopadhyay

Abstract:

'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture.

Keywords: annealing, rolled in scale, rolled in scum, skin panel

Procedia PDF Downloads 187
972 Research on “Three Ports in One” Comprehensive Transportation System of Sea, Land and Airport in Nantong City under the Background of a New Round of Territorial Space Planning

Authors: Ying Sun, Yuxuan Lei

Abstract:

Based on the analysis of the current situation of Nantong's comprehensive transportation system, the interactive relationship between the transportation system and the economy and society is clarified, and then the development strategy for the planning and implementation of the "three ports in one" comprehensive transportation system of ocean, land, and airport is proposed for this round of territorial spatial planning. The research findings are as follows: (1) The comprehensive transportation network system of Nantong City is beginning to take shape, but the lack of a unified and complete system planning makes it difficult to establish a "multi-port integration" pattern with transportation hubs. (2) At the Yangtze River Delta level and Nantong City level, a connected transport node integrating ocean, land, and airport should be built in the transportation construction planning to effectively meet the guidance of the overall territorial space planning of Nantong City. (3) Nantong's comprehensive transportation system and economic society have experienced three interactive development relations in different stages: mutual promotion, geographical separation, and high-level driving. Therefore, the current planning of Nantong's comprehensive transportation system needs to be optimized. The four levels of Nantong city, Shanghai metropolitan area, Yangtze River Delta, and each district, county, and city should be comprehensively considered, and the four development strategies of accelerating construction, dislocation development, active docking, and innovative implementation should be adopted.

Keywords: master plan for territorial space, Integrated transportation system, Nantong, sea, land and air, "Three ports in one"

Procedia PDF Downloads 146
971 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 427
970 Pricing Strategy in Marketing: Balancing Value and Profitability

Authors: Mohsen Akhlaghi, Tahereh Ebrahimi

Abstract:

Pricing strategy is a vital component in achieving the balance between customer value and business profitability. The aim of this study is to provide insights into the factors, techniques, and approaches involved in pricing decisions. The study utilizes a descriptive approach to discuss various aspects of pricing strategy in marketing, drawing on concepts from market research, consumer psychology, competitive analysis, and adaptability. This approach presents a comprehensive view of pricing decisions. The result of this exploration is a framework that highlights key factors influencing pricing decisions. The study examines how factors such as market positioning, product differentiation, and brand image shape pricing strategies. Additionally, it emphasizes the role of consumer psychology in understanding price elasticity, perceived value, and price-quality associations that influence consumer behavior. Various pricing techniques, including charm pricing, prestige pricing, and bundle pricing, are mentioned as methods to enhance sales by influencing consumer perceptions. The study also underscores the importance of adaptability in responding to market dynamics through regular price monitoring, dynamic pricing, and promotional strategies. It recognizes the role of digital platforms in enabling personalized pricing and dynamic pricing models. In conclusion, the study emphasizes that effective pricing strategies strike a balance between customer value and business profitability, ultimately driving sales, enhancing brand perception, and fostering lasting customer relationships.

Keywords: business, customer benefits, marketing, pricing

Procedia PDF Downloads 79
969 Utilizing Dowel-Laminated Mass Timber Components in Residential Multifamily Structures: A Case Study

Authors: Theodore Panton

Abstract:

As cities in the United States experience critical housing shortages, mass timber presents the opportunity to address this crisis in housing supply while taking advantage of the carbon-positive benefits of sustainably forested wood fiber. Mass timber, however, currently has a low level of adoption in residential multifamily structures due to the risk-averse nature of change within the construction financing, Architecture / Engineering / Contracting (AEC) communities, as well as various agency approval challenges. This study demonstrates how mass timber can be used within the cost and feasibility parameters of a typical multistory residential structure and ultimately address the need for dense urban housing. This study will utilize The Garden District, a mixed-use market-rate housing project in Woodinville, Washington, as a case study to illuminate the potential of mass timber in this application. The Garden District is currently in final stages of permit approval and will commence construction in 2023. It will be the tallest dowel-laminated timber (DLT) residential structure in the United States when completed. This case study includes economic, technical, and design reference points to demonstrate the relevance of the use of this system and its ability to deliver “triple bottom line” results. In terms of results, the study establishes scalable and repeatable approaches to project design and delivery of mass timber in multifamily residential uses and includes economic data, technical solutions, and a summary of end-user advantages. This study discusses the third party tested systems for satisfying acoustical requirements within dwelling units, a key to resolving the use of mass timber within multistory residential use. Lastly, the study will also compare the mass timber solution with a comparable cold formed steel (CFS) system with a similar program, which indicates a net carbon savings of over three million tons over the life cycle of the building.

Keywords: DLT, dowell laminated timber, mass timber, market rate multifamily

Procedia PDF Downloads 121
968 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity

Authors: Shivdayal Patel, Suhail Ahmad

Abstract:

Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.

Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling

Procedia PDF Downloads 279
967 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 96
966 Formulation and in Vitro Evaluation of Cubosomes Containing CeO₂ Nanoparticles Loaded with Glatiramer Acetate Drug

Authors: Akbar Esmaeili, Zahra Salarieh

Abstract:

Cerium oxide nanoparticles (nano-series) are used as catalysts in industrial applications due to their free radical scavenging properties. Given that free radicals play an essential role in the pathology of many neurological diseases, we investigated the use of nanocrystals as a potential therapeutic agent for oxidative damage. This project synthesized nano-series from a new and environmentally friendly bio-pathway. Investigation of cerium nitrate in culture medium containing inoculated Lactobacillus acidophilus strain before incubation produces nano-series. Loaded with glatiramer acetate (GA) was formed by coating carboxymethylcellulose (CMC) and CeO2. FE-SEM analysis showed nano-series in the 9-11 nm range, spherical shape, and uniform particle size distribution. Cubic nanoparticles containing anti-multiple sclerosis (anti-Ms) treatment called GA were used. Glycerol monostearate (GMS) was used as a fat base, and evening primrose extract was used as an anti-inflammatory in cubosomes. Design-Expert® software was used to study the effects of different formulation factors on the properties of GAloaded cubic dispersions. Thirty GA-labeled cubic dispersions were prepared with GA-labeled carboxymethylcellulose and evaluated in vitro. The results showed an average nano-series size of 89.02 and a zeta potential of -49.9. Cubosomes containing GA-CMC/CeO2 showed a stable release profile for 180 min. The results showed that cubosomes containing GA-CMC/CeO2 could be a promising drug carrier with normal release behavior.

Keywords: ciochemistry, biotechnology, molecular, biology

Procedia PDF Downloads 50
965 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform

Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic

Abstract:

The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.

Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms

Procedia PDF Downloads 226
964 Language Shapes Thought: An Experimental Study on English and Mandarin Native Speakers' Sequencing of Size

Authors: Hsi Wei

Abstract:

Does the language we speak affect the way we think? This question has been discussed for a long time from different aspects. In this article, the issue is examined with an experiment on how speakers of different languages tend to do different sequencing when it comes to the size of general objects. An essential difference between the usage of English and Mandarin is the way we sequence the size of places or objects. In English, when describing the location of something we may say, for example, ‘The pen is inside the trashcan next to the tree at the park.’ In Mandarin, however, we would say, ‘The pen is at the park next to the tree inside the trashcan.’ It’s clear that generally English use the sequence of small to big while Mandarin the opposite. Therefore, the experiment was conducted to test if the difference of the languages affects the speakers’ ability to do the different sequencing. There were two groups of subjects; one consisted of English native speakers, another of Mandarin native speakers. Within the experiment, three nouns were showed as a group to the subjects as their native languages. Before they saw the nouns, they would first get an instruction of ‘big to small’, ‘small to big’, or ‘repeat’. Therefore, the subjects had to sequence the following group of nouns as the instruction they get or simply repeat the nouns. After completing every sequencing and repetition in their minds, they pushed a button as reaction. The repetition design was to gather the mere reading time of the person. As the result of the experiment showed, English native speakers reacted more quickly to the sequencing of ‘small to big’; on the other hand, Mandarin native speakers reacted more quickly to the sequence ‘big to small’. To conclude, this study may be of importance as a support for linguistic relativism that the language we speak do shape the way we think.

Keywords: language, linguistic relativism, size, sequencing

Procedia PDF Downloads 281
963 The Effect of Surface Modified Nano-Hydroxyapatite Incorporation into Polymethylmethacrylate Cement on Biocompatibility and Mechanical Properties

Authors: Yu-Shan Wu, Po-Liang Lai, I-Ming Chu

Abstract:

Poly(methylmethacrylate)(PMMA) is the most frequently used bone void filler for vertebral augmentation in osteoporotic fracture. PMMA bone cement not only exhibits strong mechanical properties but also can fabricate according to the shape of bone defect. However, the adhesion between the PMMA-based cement and the adjacent bone is usually weak and as PMMA bone cement is inherently bioinert. The combination of bioceramics and polymers as composites may increase cell adhesion and improve biocompatibility. The nano-hydroxyapatite(HAP) not only plays a significant role in maintaining the properties of the natural bone but also offers a favorable environment for osteoconduction, protein adhesion, and osteoblast proliferation. However, defects and cracks can form at the polymer/ceramics interface, resulting in uneven distribution of stress and subsequent inferior mechanical strength. Surface-modified HAP nano-crystals were prepared by chemically grafting poly(ε-caprolactone)(PCL) on surface-modified nano-HAP surface to increase the affinity of polymer/ceramic phases .Thus, incorporation of surface-modified nano-hydroxyapatite (EC-HAP) may not only improve the interfacial adhesion between cement and bone and between nanoparticles and cement, but also increase biocompatibility. In this research, PMMA mixing with 0, 5, 10, 15, 20, 25 and 30 wt% EC-HAP were examined. MC3T3-E1 cells were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM). Mechanical properties of HAP/PMMA and EC-HAP/PMMA cement were investigated by compression test. Surface wettability of the cements was measured by contact angles.

Keywords: bone cement, biocompatibility, nano-hydroxyapatite, polycaprolactone, PMMA, surface grafting

Procedia PDF Downloads 395
962 Modular 3D Environmental Development for Augmented Reality

Authors: Kevin William Taylor

Abstract:

This work used industry-standard practices and technologies as a foundation to explore current and future advancements in modularity for 3D environmental production. Covering environmental generation, and AI-assisted generation, this study investigated how these areas will shape the industries goal to achieve full immersion within augmented reality environments. This study will explore modular environmental construction techniques utilized in large scale 3D productions. This will include the reasoning behind this approach to production, the principles in the successful development, potential pitfalls, and different methodologies for successful implementation of practice in commercial and proprietary interactive engines. A focus will be on the role of the 3D artists in the future of environmental development, requiring adaptability to new approaches, as the field evolves in response to tandem technological advancements. Industry findings and projections theorize how these factors will impact the widespread utilization of augmented reality in daily life. This will continue to inform the direction of technology towards expansive interactive environments. It will change the tools and techniques utilized in the development of environments for game, film, and VFX. This study concludes that this technology will be the cornerstone for the creation of AI-driven AR that is able to fully theme our world, change how we see and engage with one another. This will impact the concept of a virtual self-identity that will be as prevalent as real-world identity. While this progression scares or even threaten some, it is safe to say that we are seeing the beginnings of a technological revolution that will surpass the impact that the smartphone had on modern society.

Keywords: virtual reality, augmented reality, training, 3D environments

Procedia PDF Downloads 122
961 An Operators’ Real-sense-based Fire Simulation for Human Factors Validation in Nuclear Power Plants

Authors: Sa-Kil Kim, Jang-Soo Lee

Abstract:

On March 31, 1993, a severe fire accident took place in a nuclear power plant located in Narora in North India. The event involved a major fire in the turbine building of NAPS unit-1 and resulted in a total loss of power to the unit for 17 hours. In addition, there was a heavy ingress of smoke in the control room, mainly through the intake of the ventilation system, forcing the operators to vacate the control room. The Narora fire accident provides us lessons indicating that operators could lose their mind and predictable behaviors during a fire. After the Fukushima accident, which resulted from a natural disaster, unanticipated external events are also required to be prepared and controlled for the ultimate safety of nuclear power plants. From last year, our research team has developed a test and evaluation facility that can simulate external events such as an earthquake and fire based on the operators’ real-sense. As one of the results of the project, we proposed a unit real-sense-based facility that can simulate fire events in a control room for utilizing a test-bed of human factor validation. The test-bed has the operator’s workstation shape and functions to simulate fire conditions such as smoke, heat, and auditory alarms in accordance with the prepared fire scenarios. Furthermore, the test-bed can be used for the operators’ training and experience.

Keywords: human behavior in fire, human factors validation, nuclear power plants, real-sense-based fire simulation

Procedia PDF Downloads 283
960 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: fatigue, test rig, crack initiation, life, rail, squats

Procedia PDF Downloads 515
959 The Role of Ideophones: Phonological and Morphological Characteristics in Literature

Authors: Cristina Bahón Arnaiz

Abstract:

Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature. 

Keywords: ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism

Procedia PDF Downloads 149
958 Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice

Authors: Sobhy A. El-Sohaimy, Mohamed G. Shehata, Ashwani Mathur, Amira G. Darwish, Nourhan M. Abd El-Aziz, Pammi Gauba, Pooja Upadhyay

Abstract:

Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that pro- vides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respec- tively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antiox- idant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buck- thorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.

Keywords: sea buckthorn juice, L. plantarum RM1, fermentation, antioxidant, antimicrobial, angiotensin converting enzyme inhibition

Procedia PDF Downloads 98
957 Resilience Assessment of Mountain Cities from the Perspective of Disaster Prevention: Taking Chongqing as an Example

Authors: Yun Ma, Jiajun Lu

Abstract:

President Xi Jinping has clearly stated the need to more effectively advance the process of urbanization centered on people, striving to shape cities into spaces that are healthier, safer, and more livable. However, during the development and construction of mountainous cities, numerous uncertain disruptive factors have emerged, one after another, posing severe challenges to the city's overall development. Therefore, building resilient cities and creating high-quality urban ecosystems and safety systems have become the core and crux of achieving sustainable urban development. This paper takes the central urban area of Chongqing as the research object and establishes an urban resilience assessment indicator system from four dimensions: society, economy, ecology, and infrastructure. It employs the entropy weight method and TOPSIS model to assess the urban resilience level of the central urban area of Chongqing from 2019 to 2022. The results indicate that i. the resilience level of the central urban area of Chongqing is unevenly distributed, showing a spatial pattern of "high in the middle and low around"; it also demonstrates differentiation across different dimensions; ii. due to the impact of the COVID-19 pandemic, the overall resilience level of the central urban area of Chongqing has declined significantly, with low recovery capacity and slow improvement in urban resilience. Finally, based on the four selected dimensions, this paper proposes optimization strategies for urban resilience in mountainous cities, providing a basis for Chongqing to build a safe and livable new city.

Keywords: mountainous urban areas, central urban area of Chongqing, entropy weight method, TOPSIS model, ArcGIS

Procedia PDF Downloads 4
956 Effects of Aromatase Inhibitor on Morphology and Body Shape in Sex-Reversal Chicken: Gimmizah Strain

Authors: Hatem Ashur Masoud Shreha

Abstract:

Aromatase inhibitors administered before sexual differentiation of the gonads in chicken embryo can induce sex reversal in female layer chickens (phenotypic male). To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor on morphology of female sex-reversed and female sex-reversed supplemented with L-tyrosine which was previously shown to stimulate release of Gn Rh. Fadrozole (1mg/egg) was injected into eggs on day four of incubation before sex differentiation. phenotypic males and phenotypic males treated with L-tyrosine and males hatched from eggs injected Fadrozole were sacrificed by slaughtering at 16 weeks old and the remaining chicks were sacrificed at 28 weeks old. Both sexes from control chickens were sacrificed at the same age (16 &28 weeks). Hatchability, behavior, body weight, shank length, comb weight, testes weight, blood cells count and wattle weight of sex reversal were tested at 16 and 28 weeks. The results showed that body weight, comb weight, wattles weight and shank length of sex-reversed females were significantly different from control female. Behavior of phenotypic males and phenotypic males fed on L-tyrosine showed aggressive sexual behavior like that of control males and absence of laying behavior. In conclusion our results confirm that Fadrazole injection in eggs before sex differentiation produce a male behavior and morphological index of male in female chicken.

Keywords: sex-reversal, fadrozole, phenotypic male, L-tyrosine

Procedia PDF Downloads 452
955 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements

Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus

Abstract:

The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.

Keywords: T-RTM technology, composite, automotive, class A surface

Procedia PDF Downloads 139
954 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance

Procedia PDF Downloads 433
953 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 256
952 The Role of Nutrition and Food Engineering in Promoting Sustainable Food Systems

Authors: Sara Khan Mohammadi

Abstract:

The world is facing a major challenge of feeding a growing population while ensuring the sustainability of food systems. The United Nations estimates that the global population will reach 9.7 billion by 2050, which means that food production needs to increase by 70% to meet the demand. However, this increase in food production should not come at the cost of environmental degradation, loss of biodiversity, and climate change. Therefore, there is a need for sustainable food systems that can provide healthy and nutritious food while minimizing their impact on the environment. Nutrition and Food Engineering: Nutrition and food engineering play a crucial role in promoting sustainable food system. Nutrition is concerned with the study of nutrients in foods, their absorption, metabolism, and their effects on health. Food engineering involves the application of engineering principles to design, develop, and optimize food processing operations. Together, nutrition and food engineering can help to create sustainable food systems by: 1. Developing Nutritious Foods: Nutritionists and food engineers can work together to develop foods that are rich in nutrients such as vitamins, minerals, fiber, and protein. These foods can be designed to meet the nutritional needs of different populations while minimizing waste. 2. Reducing Food Waste: Food waste is a major problem globally as it contributes to greenhouse gas emissions and wastes resources such as water and land. Nutritionists and food engineers can work together to develop technologies that reduce waste during processing, storage, transportation, and consumption. 3. Improving Food Safety: Unsafe foods can cause illnesses such as diarrhea, cholera, typhoid fever among others which are major public health concerns globally. Nutritionists and food engineers can work together to develop technologies that improve the safety of foods from farm to fork. 4. Enhancing Sustainability: Sustainable agriculture practices such as conservation agriculture can help reduce soil erosion while improving soil fertility. Nutritionists and food engineers can work together to develop technologies that promote sustainable agriculture practices.

Keywords: sustainable food, developing food, reducing food waste, food safety

Procedia PDF Downloads 86
951 Psychological Impacts of Over-the-Top Services on Consumer Behaviors during the COVID-19 Pandemic

Authors: Hector Liu, Chih-Ming Tsai

Abstract:

Consumer behaviors in the subscription of over-the-top (OTT) media services have substantially changed because of the COVID-19 pandemic; hence, this study aims to determine the factors affecting subscription intentions. The increased usage of OTT media, particularly in the lockdowns during the COVID-19 pandemic, has intensified the competition between both global and local streaming providers. While studies have discussed antecedents accounting for this change, they have paid limited attention to the psychological factors that shape consumer behavior in using OTT services. Given the changes in consumers’ psychological states during the pandemic, this study seeks to fill the research gap by integrating the expectancy-value model to provide insights into the key gratifications that consumers seek and obtain and that have affected their subscription to OTT services. This study proposes a theoretical model and assesses this framework on data collected from 1,068 OTT service users in Taiwan. The results strengthen the literature by indicating a clear growth in the popularity and subscription of OTT services because of the COVID-19 lockdowns as well as factors such as perceived quality and satisfaction, which influence behavioral intentions for OTT services. Most crucially, however, OTT viewers who acquired a sense of belonging, a sense of being accompanied, and a sense of reduction in anxiety due to being quarantined and in lockdown show a higher tendency to continue their subscriptions to their OTT services of choice during the pandemic. With consumer behavior trends forever changed by the COVID-19 pandemic, the implications from this study provide OTT service platforms with an opportunity to capitalize on their current and potential customers’ changing desires, demands, and factors for a continued subscription.

Keywords: consumer behavior, COVID-19, expectancy-value model, OTT media services

Procedia PDF Downloads 121
950 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.

Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light

Procedia PDF Downloads 170
949 Occurrence of Broiler Chicken Breast White Striping Meat in Brazilian Commercial Plant

Authors: Talita Kato, Moises Grespan, Elza I. Ida, Massami Shimokomaki, Adriana L. Soares

Abstract:

White Striping (WS) is becoming a concern for the poultry industry, as it affects the look of breast broiler chicken meat leading it to rejection by the consumers. It is characterized by the appearance of varying degrees of white striations on the Pectoralis major muscle surface following the direction of the muscle fiber. The etiology of this myopathy is still unknown, however it is suggested to be associated with increased weight gain rate and age of the bird, attributing the phenomenon to the genetically bird’s selection for efficiently higher meat production. The aim of this study was to evaluate the occurrence of Pectoralis major WS in a commercial plant in southern Brazil and its chemical characterization. The breast meat samples (n=660) from birds of 47 days of age, were classified as: Normal NG (no apparent white striations), Moderate MG (when the fillets present thin lines <1 mm) and Severe SG (white striations present ˃1 mm thick covering a large part of the fillet surface). Thirty samples (n = 10 for each level of severity) were analyzed for pH, color (L*, a*, b*), proximate chemical composition (moisture, protein, ash and lipids contents) and hydroxyproline in order to determine the collagen content. The results revealed the occurrence for NG group was 16.97%, 51.67% for MG group and 31.36% for SG group. Although the total protein content did not differ significantly, the collagen index was 42% higher in favor to SG in relation to NG. Also the lipid fraction was 27% higher for SG group. The NG presented the lowest values of the parameters L* and a* (P ≤ 0.05), as there was no white striations on its surface and highest b* value in SG, because of the maximum lipid contents. These results indicate there was a contribution of the SG muscle cells to oversynthesize connective tissue components on the muscle fascia. In conclusion, this study revealed a high incidence of White Striping on broiler commercial line in Brazil thus, there is a need to identify the causes of this abnormality in order to diminish or to eliminate it.

Keywords: collagen content, commercial line, pectoralis major muscle, proximate composition

Procedia PDF Downloads 251
948 Film Therapy on Adolescent Body Image: A Pilot Study

Authors: Sonia David, Uma Warrier

Abstract:

Background: Film therapy is the use of commercial or non-commercial films to enhance healing for therapeutic purposes. Objectives: The mixed-method study aims to evaluate the effect of film-based counseling on body image dissatisfaction among adolescents to precisely ascertain the cause of the alteration in body image dissatisfaction due to the said intervention. Method: The one group pre-test post-test research design study using inferential statistics and thematic analysis is based on a pre-test post-test design conducted on 44 school-going adolescents between 13 and 17. The Body Shape Questionnaire (BSQ- 34) was used as a pre-test and post-test measure. The film-based counseling intervention model was used through individual counseling sessions. The analysis involved paired sample t-test used to examine the data quantitatively, and thematic analysis was used to evaluate qualitative data. Findings: The results indicated that there is a significant difference between the pre-test and post-test means. Since t(44)= 9.042 is significant at a 99% confidence level, it is ascertained that film-based counseling intervention reduces body image dissatisfaction. The five distinct themes from the thematic analysis are “acceptance, awareness, empowered to change, empathy, and reflective.” Novelty: The paper originally contributes to the repertoire of research on film therapy as a successful counseling intervention for addressing the challenges of body image dissatisfaction. This study also opens avenues for considering alteration of teaching pedagogy to include video-based learning in various subjects.

Keywords: body image dissatisfaction, adolescents, film-based counselling, film therapy, acceptance and commitment therapy

Procedia PDF Downloads 294
947 Status of Production, Distribution and Determinants of Biomass Briquette Acceptability in Kampala, Uganda

Authors: David B. Kisakye, Paul Mugabi

Abstract:

Biomass briquettes have been identified as a plausible and close alternative to commonly used energy fuels such as charcoal and firewood, whose prices are escalating due to the dwindling natural resource base. However, briquettes do not seem to be as popular as would be expected. This study assessed the production, distribution, and acceptability of the briquettes in the Kampala district. A total of 60 respondents, 50 of whom were briquette users and 10 briquette producers, were sampled from five divisions of Kampala district to evaluate consumer acceptability, preference for briquette type and shape. Households and institutions were identified to be the major consumers of briquettes, while community-based organizations were the major distributors of briquettes. The Chi-square test of independence showed a significant association between briquette acceptability and briquette attributes of substitutability and low cost (p < 0,05). The Kruskal Wallis test showed that low-income class people preferred non-carbonized briquettes. Gender, marital status, and income level also cause variation in preference for spherical, stick, and honeycomb briquettes (p < 0,05). The major challenges faced by briquette users in Kampala were; production of a lot of ash, frequent crushing, and limited access to briquettes. The producers of briquettes were mainly challenged by regular machine breakdown, raw material scarcity, and poor carbonizing units. It was concluded that briquettes have a market and are generally accepted in Kampala. However, user preferences need to be taken into account by briquette produces, suitable cookstoves should be availed to users, and there is a need for standards to ensure the quality of briquettes.

Keywords: consumer acceptability, biomass residues, briquettes, briquette producers, distribution, fuel, marketability, wood fuel

Procedia PDF Downloads 143
946 Preparing a Library of Abnormal Masses for Designing a Long-Lasting Anatomical Breast Phantom for Ultrasonography Training

Authors: Nasibullina A., Leonov D.

Abstract:

The ultrasonography method is actively used for the early diagnosis of various le-sions in the human body, including the mammary gland. The incidence of breast cancer has increased by more than 20%, and mortality by 14% since 2008. The correctness of the diagnosis often directly depends on the qualifications and expe-rience of a diagnostic medical sonographer. That is why special attention should be paid to the practical training of future specialists. Anatomical phantoms are ex-cellent teaching tools because they accurately imitate the characteristics of real hu-man tissues and organs. The purpose of this work is to create a breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. We used silicone-like compounds ranging from 3 to 17 on the Shore scale hardness units to simulate soft tissue and lesions. Impurities with experimentally selected concentrations were added to give the phantom the necessary attenuation and reflection parameters. We used 3D modeling programs and 3D printing with PLA plastic to create the casting mold. We developed a breast phantom with inclusions of varying shape, elasticity and echogenicity. After testing the created phantom in B-mode and elastography mode, we performed a survey asking 19 participants how realistic the sonograms of the phantom were. The results showed that the closest to real was the model of the cyst with 9.5 on the 0-10 similarity scale. Thus, the developed breast phantom can be used for ultrasonography, elastography, and ultrasound-guided biopsy training.

Keywords: breast ultrasound, mammary gland, mammography, training phantom, tissue-mimicking materials

Procedia PDF Downloads 93
945 Assessment of Sleep Disorders in Moroccan Women with Gynecological Cancer: Cross-Sectional Study

Authors: Amina Aquil, Abdeljalil El Got

Abstract:

Background: Sleep quality is one of the most important indicators related to the quality of life of patients suffering from cancer. Many factors could affect this quality of sleep and then be considered as associated predictors. Methods: The aim of this study was to assess the prevalence of sleep disorders and the associated factors with impaired sleep quality in Moroccan women with gynecological cancer. A cross-sectional study was carried out within the oncology department of the Ibn Rochd University Hospital, Casablanca, on Moroccan women who had undergone radical surgery for gynecological cancer (n=100). Translated and validated Arabic versions of the following international scales were used: Pittsburgh sleep quality index (PSQI), Hospital Anxiety and Depression Scale (HADS), Rosenberg's self-esteem scale (RSES), and Body image scale (BIS). Results: 78% of participants were considered poor sleepers. Most of the patients exhibited very poor subjective quality, low sleep latency, a short period of sleep, and a low rate of usual sleep efficiency. The vast majority of these patients were in poor shape during the day and did not use sleep medication. Waking up in the middle of the night or early in the morning and getting up to use the bathroom were the main reasons for poor sleep quality. PSQI scores were positively correlated with anxiety, depression, body image dissatisfaction, and lower self-esteem (p < 0.001). Conclusion: Sleep quality and its predictors require a systematic evaluation and adequate management to prevent sleep disturbances and mental distress as well as to improve the quality of life of these patients.

Keywords: body image, gynecological cancer, self esteem, sleep quality

Procedia PDF Downloads 123