Search results for: external mechanical forces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6794

Search results for: external mechanical forces

4334 Language Literacy Attrition: An Empirical Investigation

Authors: Ahmad Al-Issa

Abstract:

Our world is now operating under the auspices of globalization with its attendant language of ‘global English.' In many parts of the world, the need for English is often accepted without much thought given to native languages. Indeed, this is the current situation in the United Arab Emirates (UAE), with English encroaching into all areas of society, and especially forcefully into the education sector, where English as a medium of instruction (EMI) is on the rise. At the same time, Arabic literacy (i.e., the ability to read and write in Arabic) is declining among the UAE youth. Using a mixed-methods design, a study was conducted to gain insights into the use of Arabic by Emirati University students. The study examines how often Emiratis, males and females, use their native language (Arabic) in their daily lives, how they view their reading and writing skills in Arabic vis-à-vis their English literacy skills, and the extent to which they can demonstrate their literacy skills in Arabic. Clear evidence emerged showing that while Arabic as a dialect continues to be spoken on a daily basis, Arabic literacy is unquestionably losing ground. This was found to be motivated by educational, political, societal, and personal forces. These findings and their implications to language policy and existing bilingualism programs will be discussed. Suggestions for further research will also be made.

Keywords: Arabic, globalization, global English, literacy attrition, United Arab Emirates

Procedia PDF Downloads 287
4333 Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 444
4332 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 352
4331 Obstacles to Innovation for SMEs: Evidence from Germany

Authors: Natalia Strobel, Jan Kratzer

Abstract:

Achieving effective innovation is a complex task and during this process firms (especially SMEs) often face obstacles. However, research into obstacles to innovation focusing on SMEs is very scarce. In this study, we propose a theoretical framework for describing these obstacles to innovation and investigate their influence on the innovative performance of SMEs. Data were collected in 2013 through face-to-face interviews with executives of 49 technology SMEs from Germany. The semi-structured interviews were designed on the basis of scales for measuring innovativeness, financial/competitive performance and obstacles to innovation, next to purely open questions. We find that the internal obstacles lack the know-how, capacity overloading, unclear roles and tasks, as well as the external obstacle governmental bureaucracy negatively influence the innovative performance of SMEs. However, in contrast to prior findings this study shows that cooperation ties of firms might also negatively influence the innovative performance.

Keywords: innovation, innovation process, obstacles, SME

Procedia PDF Downloads 347
4330 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details

Authors: Wentao He, Jingxi Liu, De Xie

Abstract:

It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.

Keywords: crack path, fatigue crack, fatigue live, FCG-system, virtual crack closure technique

Procedia PDF Downloads 566
4329 Stability or Instabilty? Triplet Deficit Analysis In Turkey

Authors: Zeynep Karaçor, Volkan Alptekin, Gökhan Akar, Tuba Akar

Abstract:

This paper aims to review the phenomenon of triplet deficit which is called interaction of budget balance that make up the overall balance of the economy, investment savings balance and current accounts balance in terms of Turkey. In this paper, triplet deficit state in Turkish economy has been analyzed with vector autoregressive model and Granger causality test using data covering the period of 1980-2010. According to VAR results, increase in current accounts is perceived on public sector borrowing requirement. These two variables influence each other bilaterally. Therefore, current accounts increase public deficit, whereas public deficit increases current accounts. It is not possible to mention the existence of a short-term Granger causality between variables at issue.

Keywords: internal and external deficit, stability, triplet deficit, Turkey economy

Procedia PDF Downloads 339
4328 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 145
4327 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz

Abstract:

Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 129
4326 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 233
4325 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms

Authors: Yaping Zhao, Yimin Zhang

Abstract:

In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.

Keywords: random vibration, cantilever beam, mean square response, white noise

Procedia PDF Downloads 379
4324 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.

Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic

Procedia PDF Downloads 698
4323 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 268
4322 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique

Authors: Tatiana S. Ogneva

Abstract:

Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.

Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure

Procedia PDF Downloads 116
4321 Gaualofa: Tsunami Impact and Samoan Grief Recovery

Authors: Byron Malaela Sotiata Seiuli

Abstract:

When a disaster strike, the resultant impact and devastation forces many people, particularly those directly affected, to re-examine the core dimensions of life that do not come from other life events. The way people respond to and try give meaning to their experiences resultant from the ruptures of trauma remains vital in grief recovery. On 29 October 2009, an earthquake of 8.3 magnitudes generated a galulolo (tsunami) wave that destroyed parts of American Samoa, Tonga and Samoa (previously Western Samoa). Aside from the physical and natural devastation, many people lost their lives and their livelihood. For health professionals who were called upon to provide psychosocial support, this calamity provided an ideal setting to examine and explore how those directly impacted recovered from the calamity. The experiences of a Samoan couple, Fia and Ola, becomes the key focus of this article, one that situates their mourning patterns and recovery journey in the context of Samoan culture. Examining grief from this perspective creates a cultural space to extend indigenous understanding on the complexities of grieving and customarily responses of Samoan people, like this couple, to disaster recovery.

Keywords: Fa'asamoa, galulolo, tsunami disaster, trauma and grief recovery, pacific psychology

Procedia PDF Downloads 197
4320 Environmental Performance Improvement of Additive Manufacturing Processes with Part Quality Point of View

Authors: Mazyar Yosofi, Olivier Kerbrat, Pascal Mognol

Abstract:

Life cycle assessment of additive manufacturing processes has evolved significantly since these past years. A lot of existing studies mainly focused on energy consumption. Nowadays, new methodologies of life cycle inventory acquisition came through the literature and help manufacturers to take into account all the input and output flows during the manufacturing step of the life cycle of products. Indeed, the environmental analysis of the phenomena that occur during the manufacturing step of additive manufacturing processes is going to be well known. Now it becomes possible to count and measure accurately all the inventory data during the manufacturing step. Optimization of the environmental performances of processes can now be considered. Environmental performance improvement can be made by varying process parameters. However, a lot of these parameters (such as manufacturing speed, the power of the energy source, quantity of support materials) affect directly the mechanical properties, surface finish and the dimensional accuracy of a functional part. This study aims to improve the environmental performance of an additive manufacturing process without deterioration of the part quality. For that purpose, the authors have developed a generic method that has been applied on multiple parts made by additive manufacturing processes. First, a complete analysis of the process parameters is made in order to identify which parameters affect only the environmental performances of the process. Then, multiple parts are manufactured by varying the identified parameters. The aim of the second step is to find the optimum value of the parameters that decrease significantly the environmental impact of the process and keep the part quality as desired. Finally, a comparison between the part made by initials parameters and changed parameters is made. In this study, the major finding claims by authors is to reduce the environmental impact of an additive manufacturing process while respecting the three quality criterion of parts, mechanical properties, dimensional accuracy and surface roughness. Now that additive manufacturing processes can be seen as mature from a technical point of view, environmental improvement of these processes can be considered while respecting the part properties. The first part of this study presents the methodology applied to multiple academic parts. Then, the validity of the methodology is demonstrated on functional parts.

Keywords: additive manufacturing, environmental impact, environmental improvement, mechanical properties

Procedia PDF Downloads 282
4319 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy

Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie

Abstract:

NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.

Keywords: heat treatment, phase transformation, superelasticity, NiTi alloy

Procedia PDF Downloads 127
4318 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 173
4317 Evaluation of Polyurethane-Bonded Particleboard Manufactured with Eucalyptus Sp. and Bi-Oriented Polypropylene Wastes

Authors: Laurenn Borges de Macedo, Fabiane Salles Ferro, Tiago Hendrigo de Almeida, Gérson Moreira de Lima, André Luiz Christoforo, Francisco Antonio Rocco Lahr

Abstract:

The growth of the furniture manufacturing industry is one of the fundamental factors contributing to the growth of the particleboard industry. The use of recycled products into particleboards can contribute to the forest conservation, in addition to achieve a high quality sustainable product with low-cost production. This work investigates the effect of bi-oriented polypropylene (BOPP) waste particles and sealing product on the physical and mechanical properties of Eucalyptus sp. particleboards fabricated with a castor oil based polyurethane resin. Among the factors, only the seal coating was statistically significant. The wood panels of Treatment 2 were classified as H1, based on the internal bond strength and elastic modulus results data required by ANSI A208.1:1999. The bending strength data did not reach the minimum values recommended by NBR 14810:2006 and ANSI A208.1:1999. The thickness swelling data for 2h immersed in water achieved the standard requirement levels. High-density panels were achieved revealing their potential use in variety of particleboard applications.

Keywords: BOPP, mechanical properties, particleboards, physical properties

Procedia PDF Downloads 366
4316 Ecological Planning Method of Reclamation Area Based on Ecological Management of Spartina Alterniflora: A Case Study of Xihu Harbor in Xiangshan County

Authors: Dong Yue, Hua Chen

Abstract:

The study region Xihu Harbor in Xiangshan County, Ningbo City is located in the central coast of Zhejiang Province. Concerning the wave dispating issue, Ningbo government firstly introduced Spartina alterniflora in 1980s. In the 1990s, S. alterniflora spread so rapidly thus a ‘grassland’ in the sea has been created nowadays. It has become the most important invasive plant of China’s coastal tidal flats. Although S. alterniflora had some ecological and economic functions, it has also brought series of hazards. It has ecological hazards on many aspects, including biomass and biodiversity, hydrodynamic force and sedimentation process, nutrient cycling of tidal flat, succession sequence of soil and plants and so on. On engineering, it courses problems of poor drainage and channel blocking. On economy, the hazard mainly reflected in the threat on aquaculture industry. The purpose of this study is to explore an ecological, feasible and economical way to manage Spartina alterniflora and use the land formed by it, taking Xihu Harbor in Xiangshan County as a case. Comparison method, mathematical modeling, qualitative and quantitative analysis are utilized to proceed the study. Main outcomes are as follows. By comparing a series of S. alterniflora managing methods which include the combination of mechanical cutting and hydraulic reclamation, waterlogging, herbicide and biological substitution from three standpoints – ecology, engineering and economy. It is inferred that the combination of mechanical cutting and hydraulic reclamation is among the top rank of S. alternifora managing methods. The combination of mechanical cutting and hydraulic reclamation means using large-scale mechanical equipment like large screw seagoing dredger to excavate the S. alterniflora with root and mud together. Then the mix of mud and grass was blown off nearby coastal tidal zone transported by pipelines, which can cushion the silt of tidal zone to form a land. However, as man-made land by coast, the reclamation area’s ecological sensitivity is quite high and will face high possibility of flood threat. Therefore, the reclamation area has many reasonability requirements, including ones on location, specific scope, water surface rate, direction of main watercourse, site of water-gate, the ratio of ecological land to urban construction land. These requirements all became important basis when the planning was being made. The water system planning, green space system planning, road structure and land use all need to accommodate the ecological requests. Besides, the profits from the formed land is the managing project’s source of funding, so how to utilize land efficiently is another considered point in the planning. It is concluded that by aiming at managing a large area of S. alterniflora, the combination of mechanical cutting and hydraulic reclamation is an ecological, feasible and economical method. The planning of reclamation area should fully respect the natural environment and possible disasters. Then the planning which makes land use efficient, reasonable, ecological will promote the development of the area’s city construction.

Keywords: ecological management, ecological planning method, reclamation area, Spartina alternifora, Xihu harbor

Procedia PDF Downloads 305
4315 Sustainability of Environment and Green Energy Strategies Comprehensive Analysis

Authors: Vahid Pirooznia

Abstract:

In this think about we propose a few green vitality procedures for feasible advancement. In this respect, seven green energy methodologies are taken into thought to decide the sectoral, innovative, and application affect proportions. Based on these proportions, we determine a modern parameter as the green energy affect proportion. In expansion, the green energy-based supportability proportion is gotten by depending upon the green energy affect proportion, and the green energy utilization proportion that's calculated utilizing real vitality information taken from literature. In arrange to confirm these parameters, three cases are considered. Subsequently, it can be considered that the sectoral affect proportion is more imperative and ought to be kept consistent as much as conceivable in a green vitality arrangement usage. In addition, the green energy-based supportability proportion increments with an increment of mechanical, sectoral, and application affect proportions. This implies that all negative impacts on the mechanical, innovative, sectoral and social improvements mostly and/or totally diminish all through the move and utilization to and of green energy and advances when conceivable feasible sustainable economic feasible maintainable energy techniques are favored and connected. Hence, the economical energy methodologies can make an imperative commitment to the economies of the nations where green energy (e.g., wind, sun based, tidal, biomass) is inexhaustibly created. Hence, the speculation in green energy supply and advance ought to be energized by governments and other specialists for a green energy substitution of fossil powers for more ecologically generous and feasible future.

Keywords: green energy, environment, sustainable, development

Procedia PDF Downloads 69
4314 Anti-Graft Instruments and Their Role in Curbing Corruption: Integrity Pact and Its Impact on Indian Procurement

Authors: Jot Prakash Kaur

Abstract:

The paper aims to showcase that with the introduction of anti-graft instruments and willingness of the governments towards their implementation, a significant change can be witnessed in the anti-corruption landscape of any country. Since the past decade anti-graft instruments have been introduced by several international non-governmental organizations with the vision of curbing corruption. Transparency International’s ‘Integrity Pact’ has been one such initiative. Integrity Pact has been described as a tool for preventing corruption in public contracting. Integrity Pact has found its relevance in a developing country like India where public procurement constitutes 25-30 percent of Gross Domestic Product. Corruption in public procurement has been a cause of concern even though India has in place a whole architecture of rules and regulations governing public procurement. Integrity Pact was first adopted by a leading Oil and Gas government company in 2006. Till May 2015, over ninety organizations had adopted Integrity Pact, of which majority of them are central government units. The methodology undertaken to understand impact of Integrity Pact on Public procurement is through analyzing information received from important stakeholders of the instrument. Government, information was sought through Right to Information Act 2005 about the details of adoption of this instrument by various government organizations and departments. Contractor, Company websites and annual reports were used to find out the steps taken towards implementation of Integrity Pact. Civil Society, Transparency International India’s resource materials which include publications and reports on Integrity Pact were also used to understand the impact of Integrity Pact. Some of the findings of the study include organizations adopting Integrity pacts in all kinds of contracts such that 90% of their procurements fall under Integrity Pact. Indian State governments have found merit in Integrity Pact and have adopted it in their procurement contracts. Integrity Pact has been instrumental in creating a brand image of companies. External Monitors, an essential feature of Integrity Pact have emerged as arbitrators for the bidders and are the first line of procurement auditors for the organizations. India has cancelled two defense contracts finding it conflicting with the provisions of Integrity Pact. Some of the clauses of Integrity Pact have been included in the proposed Public Procurement legislation. Integrity Pact has slowly but steadily grown to become an integral part of big ticket procurement in India. Government’s commitment to implement Integrity Pact has changed the way in which public procurement is conducted in India. Public Procurement was a segment infested with corruption but with the adoption of Integrity Pact a number of clean up acts have been performed to make procurement transparent. The paper is divided in five sections. First section elaborates on Integrity Pact. Second section talks about stakeholders of the instrument and the role it plays in its implementation. Third section talks about the efforts taken by the government to implement Integrity Pact in India. Fourth section talks about the role of External Monitor as Arbitrator. The final section puts forth suggestions to strengthen the existing form of Integrity Pact and increase its reach.

Keywords: corruption, integrity pact, procurement, vigilance

Procedia PDF Downloads 332
4313 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites

Authors: S. Kerakra, S. Bouhelal, M. Poncot

Abstract:

The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.

Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope

Procedia PDF Downloads 271
4312 A Descriptive Study of ‎Translated Texts from Socio-Cultural Aspects ‎through Polysystem Theory and Patronage Framework

Authors: Reza Nozadheravi, Masoud Hasanzade Novin

Abstract:

Those techniques of translation which are engaged with short textual segments and mostly are prescriptive can be considered as micro level elements. Macro levels, however, refer to those translation strategies and those external factors that affect the translator’s decisions and have descriptive nature. What was scrutinized in details in the paper reveals the ‎macro-elements which are crucial in canonized translated texts, moreover, different aspects ‎of the patronage, which can be considered as the important factors from having the texts ‎chosen to the final translation products, have been observed in translated texts of Najaf ‎Darya-Bandarie, the well-known Iranian Translator. What is probed in this paper ‎reveals that marco-elements along with the linguistic aspects of the texts, micro-elements, ‎are considered as the significant aspects in translation process and even final translated ‎texts.

Keywords: canolized translated texts‎, culture‎, macro-elements‎, patronage

Procedia PDF Downloads 599
4311 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads

Authors: Ganga K. V. Prakhya, V. Karthigeyan

Abstract:

The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.

Keywords: concrete, explosion, fluid structure interaction, offshore structures

Procedia PDF Downloads 185
4310 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 235
4309 Magneto-Optical Properties in Transparent Region of Implanted Garnet Films

Authors: Lali Kalanadzde

Abstract:

We investigated magneto-optical Kerr effect in transparent region of implanted ferrite-garnet films for the (YBiCa)3(FeGe)5O12. The implantation process was carried out at room temperature by Ne+ ions with energy of 100 KeV and with various doses (0.5-2.5) 1014 ion/cm2. We discovered that slight deviation of the plane of external alternating magnetic field from plane of sample leads to appearance intensive magneto-optical maximum in transparent region of garnet films ħω=0.5-2.0 eV. In the proceeding, we have also found that the deviation of polarization plane from P- component of incident light leads to the appearance of the similar magneto-optical effects in this region. The research of magnetization processes in transparent region of garnet films showed that the formation of magneto-optical effects in region ħω=0.5-2.3 eV has a rather complex character.

Keywords: ferrite-garnet films, ion implantation, magneto-optical, thin films

Procedia PDF Downloads 299
4308 Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter

Authors: M. Alwetaishi, Giulia Sonetti

Abstract:

It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent.

Keywords: architectural building design, building form, building design in different climate, indoor air temperature

Procedia PDF Downloads 401
4307 Retirement Planning and Job Satisfaction: Cushion to Avoid Bridge Employment?

Authors: Zaiton Osman, Imbarine Bujang, Azaze-Azizi Abdul Adis, Grace Phang Ing, Mohd Rizwan Abdul Majid, Izyanti Awang Razli

Abstract:

Retirement forces older workers to disconnect with their previous behavioural patterns and economic position. Transition and adjustment from working life to retirement places create psychological pressure and financial distress on older workers, especially those with dependent children. Bridge employment provides a solution for older workers to continue working after retirement while transitioning into retirement slowly and smoothly. As losing the job role has a significant impact on the psychological well-being of retirees, engageing in bridge employment helps to fulfill the important psychological functions of older workers by providing an adaptive style to retirement. This study investigates the influence of retirement planning and job satisfaction on bridge employment. A self-administered questionnaire was used in this study and a total of 523 samples were collected for nine major district in Sabah. Data were analysed using Partial Least Square (PLS) method wersion 2.0. The result shows a significant relationship between retirement planning and job satisfaction on bridge employment, explaining 4.7% the variance in bridge employment and job satisfaction was found to be the strongest predictor of bridge employment.

Keywords: ageing population, retirement planning, job satisfaction, bridge employment

Procedia PDF Downloads 352
4306 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels

Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef

Abstract:

This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.

Keywords: heat and mass transfer, mixed convection, poiseuille-rayleigh-benard flow, rectangular duct

Procedia PDF Downloads 293
4305 Designing Automated Embedded Assessment to Assess Student Learning in a 3D Educational Video Game

Authors: Mehmet Oren, Susan Pedersen, Sevket C. Cetin

Abstract:

Despite the frequently criticized disadvantages of the traditional used paper and pencil assessment, it is the most frequently used method in our schools. Although assessments do an acceptable measurement, they are not capable of measuring all the aspects and the richness of learning and knowledge. Also, many assessments used in schools decontextualize the assessment from the learning, and they focus on learners’ standing on a particular topic but do not concentrate on how student learning changes over time. For these reasons, many scholars advocate that using simulations and games (S&G) as a tool for assessment has significant potentials to overcome the problems in traditionally used methods. S&G can benefit from the change in technology and provide a contextualized medium for assessment and teaching. Furthermore, S&G can serve as an instructional tool rather than a method to test students’ learning at a particular time point. To investigate the potentials of using educational games as an assessment and teaching tool, this study presents the implementation and the validation of an automated embedded assessment (AEA), which can constantly monitor student learning in the game and assess their performance without intervening their learning. The experiment was conducted on an undergraduate level engineering course (Digital Circuit Design) with 99 participant students over a period of five weeks in Spring 2016 school semester. The purpose of this research study is to examine if the proposed method of AEA is valid to assess student learning in a 3D Educational game and present the implementation steps. To address this question, this study inspects three aspects of the AEA for the validation. First, the evidence-centered design model was used to lay out the design and measurement steps of the assessment. Then, a confirmatory factor analysis was conducted to test if the assessment can measure the targeted latent constructs. Finally, the scores of the assessment were compared with an external measure (a validated test measuring student learning on digital circuit design) to evaluate the convergent validity of the assessment. The results of the confirmatory factor analysis showed that the fit of the model with three latent factors with one higher order factor was acceptable (RMSEA < 0.00, CFI =1, TLI=1.013, WRMR=0.390). All of the observed variables significantly loaded to the latent factors in the latent factor model. In the second analysis, a multiple regression analysis was used to test if the external measure significantly predicts students’ performance in the game. The results of the regression indicated the two predictors explained 36.3% of the variance (R2=.36, F(2,96)=27.42.56, p<.00). It was found that students’ posttest scores significantly predicted game performance (β = .60, p < .000). The statistical results of the analyses show that the AEA can distinctly measure three major components of the digital circuit design course. It was aimed that this study can help researchers understand how to design an AEA, and showcase an implementation by providing an example methodology to validate this type of assessment.

Keywords: educational video games, automated embedded assessment, assessment validation, game-based assessment, assessment design

Procedia PDF Downloads 415