Search results for: disaster training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4509

Search results for: disaster training

2049 Current Global Education Trends: Issues and Challenges of Physical and Health Education Teaching and Learning in Nigerian Schools

Authors: Bichi Muktar Sani

Abstract:

The philosophy of Physical and Health Education is to develop academic and professional competency which will enable individuals earn a living and render unique services to the society and also provide good basis of knowledge and experience that characterize an educated and fully developed person through physical activities. With the increase of sedentary activities such as watching television, playing videogames, increased computer technology, automation and reduction of high school Physical and Health Education schedules, young people are most likely to become overweight, and less fit. Physical Education is a systematic instruction in sports, training, practice, gymnastics, exercises, and hygiene given as part of a school or college program. Physical and Health Education is the study, practice, and appreciation of the art and science of human movement. Physical and Health Education is course in the curricula that utilizes the learning in the cognitive, affective, and psychomotor domains in a lay or movement exploration setting. The paper made some recommendations on the way forward.

Keywords: issues, challenges, physical education, school

Procedia PDF Downloads 40
2048 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network

Authors: R. Boudjelthia

Abstract:

The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.

Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete

Procedia PDF Downloads 379
2047 Effect of Common Yoga Protocol on Reaction Time of Football Players

Authors: Vikram Singh

Abstract:

The objective of the study was to study the effectiveness of common yoga protocol on reaction time (simple visual reaction time-SVRT measured in milliseconds/seconds) of male football players in the age group of 15 to 21 years. The 40 boys were randomly assigned into two groups i.e. control and experimental. SVRT for both the groups were measured on day-1 and post intervention (common yoga protocol here) was measured after 45 days of training to the experimental group only. One way ANOVA (Univariate analysis) and Independent t-test using SPSS 23 statistical package was applied to get and analyze the results. There was a significant difference after 45 days of yoga protocol in simple visual reaction time of experimental group (p = .032), t (33.05) = 3.881, p = .000 (two-tailed). Null hypothesis (that there would be no post measurement differences in reaction times of control and experimental groups) was rejected. Where p<.05. Therefore alternate hypothesis was accepted.

Keywords: footballers, t-test, yoga protocol, reaction time

Procedia PDF Downloads 253
2046 Actor Training in Social Work Education: A Pilot Study of Theatre Workshops to Enhance Clinical Empathy

Authors: Amanda Coleman, Estefanía Gonzalez

Abstract:

Empathy is considered an essential skill for engaging with social work clients. Drawing from developments in medical education, researchers will conduct and evaluate a three-part pilot theatre workshop with master level social work students (n ≈ 30) to evaluate the workshop's ability to enhance empathy among participants. Outcomes will be measured using semi-structured post-intervention interviews with a subset of participants (n ≈ 10) as well post-intervention written reflections and pre-and-post intervention quantitative evaluation of empathy using King and Holosko’s 2011 Empathy Scale for Social Workers. The content of the workshop will differ from traditional role plays, which are common in social work education, in that it will draw from role theory and research on creative empathy to emphasize role reversal with clients. Workshops will be held February and March of 2017 with preliminary findings available by April.

Keywords: education, empathy, social work, theatre

Procedia PDF Downloads 273
2045 A Qualitative Study of Experienced Early Childhood Teachers Resolving Workplace Challenges with Character Strengths

Authors: Michael J. Haslip

Abstract:

Character strength application improves performance and well-being in adults across industries, but the potential impact of character strength training among early childhood educators is mostly unknown. To explore how character strengths are applied by early childhood educators at work, a qualitative study was completed alongside professional development provided to a group of in-service teachers of children ages 0-5 in Philadelphia, Pennsylvania, United States. Study participants (n=17) were all female. The majority of participants were non-white, in full-time lead or assistant teacher roles, had at least ten years of experience and a bachelor’s degree. Teachers were attending professional development weekly for 2 hours over a 10-week period on the topic of social and emotional learning and child guidance. Related to this training were modules and sessions on identifying a teacher’s character strength profile using the Values in Action classification of 24 strengths (e.g., humility, perseverance) that have a scientific basis. Teachers were then asked to apply their character strengths to help resolve current workplace challenges. This study identifies which character strengths the teachers reported using most frequently and the nature of the workplace challenges being resolved in this context. The study also reports how difficult these challenges were to the teachers and their success rate at resolving workplace challenges using a character strength application plan. The study also documents how teachers’ own use of character strengths relates to their modeling of these same traits (e.g., kindness, teamwork) for children, especially when the nature of the workplace challenge directly involves the children, such as when addressing issues of classroom management and behavior. Data were collected on action plans (reflective templates) which teachers wrote to explain the work challenge they were facing, the character strengths they used to address the challenge, their plan for applying strengths to the challenge, and subsequent results. Content analysis and thematic analysis were used to investigate the research questions using approaches that included classifying, connecting, describing, and interpreting data reported by educators. Findings reveal that teachers most frequently use kindness, leadership, fairness, hope, and love to address a range of workplace challenges, ranging from low to high difficulty, involving children, coworkers, parents, and for self-management. Teachers reported a 71% success rate at fully or mostly resolving workplace challenges using the action plan method introduced during professional development. Teachers matched character strengths to challenges in different ways, with certain strengths being used mostly when the challenge involved children (love, forgiveness), others mostly with adults (bravery, teamwork), and others universally (leadership, kindness). Furthermore, teacher’s application of character strengths at work involved directly modeling character for children in 31% of reported cases. The application of character strengths among early childhood educators may play a significant role in improving teacher well-being, reducing job stress, and improving efforts to model character for young children.

Keywords: character strengths, positive psychology, professional development, social-emotional learning

Procedia PDF Downloads 105
2044 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 391
2043 Types of Limit Application Problems in Engineering Students: Case Studies

Authors: Veronica Diaz Quezada

Abstract:

The society of the 21st century requires training of engineers capable of solving routine and non-routine problems in applications of the limit of real functions, as part of the course Calculus I. For this purpose, research was conducted with a methodological design that combines quantitative and qualitative procedures and that aims, to identify and to characterize the types of problems according to their nature and context, through the application of a mathematics test; to know— through a questionnaire— the opinion of difficulties in their solution, previous and missing knowledge of some students of three engineering careers of a state university in Chile. This research is completed with three case studies. The results favor the performance of students in solving problems of a fantasist and realistic context, but these do not guarantee mathematical skills which are necessary to solve non-routine problems of limit applications. In conclusion, through this research, it became clear that the students of the three engineerings do not have all the necessary skills to solve problems of application of the limit of a function of the real variable.

Keywords: case studies, engineering program, limits, problem solving

Procedia PDF Downloads 129
2042 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections

Authors: Liu Lin Xin

Abstract:

With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.

Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs

Procedia PDF Downloads 35
2041 Automated Pothole Detection Using Convolution Neural Networks and 3D Reconstruction Using Stereovision

Authors: Eshta Ranyal, Kamal Jain, Vikrant Ranyal

Abstract:

Potholes are a severe threat to road safety and a major contributing factor towards road distress. In the Indian context, they are a major road hazard. Timely detection of potholes and subsequent repair can prevent the roads from deteriorating. To facilitate the roadway authorities in the timely detection and repair of potholes, we propose a pothole detection methodology using convolutional neural networks. The YOLOv3 model is used as it is fast and accurate in comparison to other state-of-the-art models. You only look once v3 (YOLOv3) is a state-of-the-art, real-time object detection system that features multi-scale detection. A mean average precision(mAP) of 73% was obtained on a training dataset of 200 images. The dataset was then increased to 500 images, resulting in an increase in mAP. We further calculated the depth of the potholes using stereoscopic vision by reconstruction of 3D potholes. This enables calculating pothole volume, its extent, which can then be used to evaluate the pothole severity as low, moderate, high.

Keywords: CNN, pothole detection, pothole severity, YOLO, stereovision

Procedia PDF Downloads 136
2040 Barriers to Tuberculosis Detection in Portuguese Prisons

Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte

Abstract:

Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.

Keywords: barriers, health care professionals, prisons, protocol, tuberculosis

Procedia PDF Downloads 147
2039 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
2038 Precursors Signatures of Few Major Earthquakes in Italy Using Very Low Frequency Signal of 45.9kHz

Authors: Keshav Prasad Kandel, Balaram Khadka, Karan Bhatta, Basu Dev Ghimire

Abstract:

Earthquakes still exist as a threating disaster. Being able to predict earthquakes will certainly help prevent substantial loss of life and property. Perhaps, Very Low Frequency/Low Frequency (VLF/LF) signal band (3-30 kHz), which is effectively reflected from D-layer of ionosphere, can be established as a tool to predict earthquake. On May 20 and May 29, 2012, earthquakes of magnitude 6.1 and 5.8 respectively struck Emilia-Romagna of Italy. A year back, on August 24, 2016, an earthquake of magnitude 6.2 struck Central Italy (42.7060 N and 13.2230 E) at 1:36 UT. We present the results obtained from the US Navy VLF Transmitter’s NSY signal of 45.9 kHz transmitted from Niscemi, in the province of Sicily, Italy and received at the Kiel Longwave Monitor, Germany for 2012 and 2016. We analyzed the terminator times, their individual differences and nighttime fluctuation counts. We also analyzed trends, dispersion and nighttime fluctuation which gave us a possible precursors to these earthquakes. Since perturbations in VLF amplitude could also be due to various other factors like lightning, geomagnetic activities (storms, auroras etc.) and solar activities (flares, UV flux, etc.), we filtered the possible perturbations due to these agents to guarantee that the perturbations seen in VLF/LF amplitudes were as a precursor to Earthquakes. As our TRGCP path is North-south, the sunrise and sunset time in transmitter and receiver places matches making pathway for VLF/LF smoother and therefore hoping to obtain more natural data. To our surprise, we found many clear anomalies (as precursors) in terminator times 5 days to 16 days before the earthquakes. Moreover, using night time fluctuation method, we found clear anomalies 5 days to 13 days prior to main earthquakes. This exactly correlates with the findings of previous authors that ionospheric perturbations are seen few days to one month before the seismic activity. In addition to this, we were amazed to observe unexpected decrease of dispersion on certain anomalies where it was supposed to increase, thereby not supporting our finding to some extent. To resolve this problem, we devised a new parameter called dispersion nighttime (dispersion). On analyzing, this parameter decreases significantly on days of nighttime anomalies thereby supporting our precursors to much extent.

Keywords: D-layer, TRGCP (Transmitter Receiver Great Circle Path), terminator times, VLF/LF

Procedia PDF Downloads 191
2037 Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining

Authors: Yangze Lan, Ruihua Xv, Feng Zhou, Yijia Shan, Longhao Zhang, Qinghui Xv

Abstract:

Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations.

Keywords: receiving and dispatching trains, natural language processing, risk evaluation, K-means clustering

Procedia PDF Downloads 91
2036 Abdominal Exercises Can Modify Abdominal Function in Postpartum Women: A Randomized Control Trial Comparing Curl-up to Drawing-in Combined With Diaphragmatic Aspiration

Authors: Yollande Sènan Djivoh, Dominique de Jaeger

Abstract:

Background: Abdominal exercises are commonly practised nowadays. Specific techniques of abdominal muscles strengthening like hypopressive exercises have recently emerged and their practice is encouraged against the practice of Curl-up especially in postpartum. The acute and the training effects of these exercises did not allow to advise one exercise to the detriment of another. However, physiotherapists remain reluctant to perform Curl-up with postpartum women because of its potential harmful effect on the pelvic floor. Design: This study was a randomized control trial registered under the number PACTR202110679363984. Objective: to observe the training effect of two experimental protocols (Curl-up versus Drawing-in+Diaphragmatic aspiration) on the abdominal wall (interrecti distance, rectus and transversus abdominis thickness, abdominal strength) in Beninese postpartum women. Pelvic floor function (tone, endurance, urinary incontinence) will be assessed to evaluate potential side effects of exercises on the pelvic floor. Method: Postpartum women diagnosed with diastasis recti were randomly assigned to one of three groups (Curl-up, Drawingin+Diaphragmatic aspiration and control). Abdominal and pelvic floor parameters were assessed before and at the end of the 6-week protocol. The interrecti distance and the abdominal muscles thickness were assessed by ultrasound and abdominal strength by dynamometer. Pelvic floor tone and strength were assessed with Biofeedback and urinary incontinence was quantified by pad test. To compare the results between the three groups and the two measurements, a two-way Anova test with repeated measures was used (p<0.05). When interaction was significant, a posthoc using Student t test, with Bonferroni correction, was used to compare the three groups regarding the difference (end value minus initial value). To complete these results, a paired Student t test was used to compare in each group the initial and end values. Results: Fifty-eight women participated in this study, divided in three groups with similar characteristics regarding their age (29±5 years), parity (2±1 children), BMI (26±4 kg/m2 ), time since the last birth (10±2 weeks), weight of their baby at birth (330±50 grams). Time effect and interaction were significant (p<0.001) for all abdominal parameters. Experimental groups improved more than control group. Curl-up group improved more (p=0.001) than Drawing-in+Diaphragmatic aspiration group regarding the interrecti distance (9.3±4.2 mm versus 6.6±4.6 mm) and abdominal strength (20.4±16.4 Newton versus 11.4±12.8 Newton). Drawingin+Diaphragmatic aspiration group improved (0.8±0.7 mm) more than Curl-up group (0.5±0.7 mm) regarding the transversus abdominis thickness (p=0.001). Only Curl-up group improved (p<0.001) the rectus abdominis thickness (1.5±1.2 mm). For pelvic floor parameters, both experimental groups improved (p=0.01) except for tone which improved (p=0.03) only in Drawing-in+Diaphragmatic aspiration group from 19.9±4.1 cmH2O to 22.2±4.5 cmH2O. Conclusion: Curl-up was more efficient to improve abdominal function than Drawingin+Diaphragmatic aspiration. However, these exercises are complementary. None of them degraded the pelvic floor, but Drawing-in+Diaphragmatic aspiration improved further the pelvic floor function. Clinical implications: Curl-up, Drawing-in and Diaphragmatic aspiration can be used for the management of abdominal function in postpartum women. Exercises must be chosen considering the specific needs of each woman’s abdominal and pelvic floor function.

Keywords: curl-up, drawing-in, diaphragmatic aspiration, hypopressive exercise, postpartum women

Procedia PDF Downloads 82
2035 The Effectiveness of Online Learning in the Wisconsin Technical College System

Authors: Julie Furst-Bowe

Abstract:

Over the past decade, there has been significant growth in online courses and programs at all levels of education in the United States. This study explores the growth of online and blended (or hybrid) programs offered by the sixteen technical colleges in the Wisconsin Technical College System (WTCS). The WTCS provides education and training programs to more than 300,000 students each year in career clusters including agriculture, business, energy, information technology, healthcare, human services, manufacturing, and transportation. These programs range from short-term training programs that may lead to a certificate to two-year programs that lead to an associate degree. Students vary in age from high school students who are exploring career interests to employees who are seeking to gain additional skills or enter a new career. Because there is currently a shortage of skilled workers in nearly all sectors in the state of Wisconsin, it is critical that the WTCS is providing fully educated and trained graduates to fill workforce needs in a timely manner. For this study, information on online and blended programs for the past five years was collected from the WTCS, including types of programs, course and program enrollments, course completion rates, program completion rates, time to completion and graduate employment rates. The results of this study indicate that the number of online and blended courses and programs is continuing to increase each year. Online and blended programs are most commonly found in the business, human services, and information technology areas, and they are less commonly found in agriculture, healthcare, manufacturing, and transportation programs. Overall, course and program completion rates were higher for blended programs when compared to fully online programs. Students preferred the blended programs over the fully online programs. Overall, graduates were placed into related jobs at a rate of approximately 90 percent, although there was some variation in graduate placement rates by programs and by colleges. Differences in graduate employment rate appeared to be based on geography and sector as employers did not distinguish between graduates who had completed their programs via traditional, blended or fully online instruction. Recommendations include further exploration as to the reasons that blended courses and programs appear to be more effective than fully online courses and programs. It is also recommended that those program areas that are not using blended or online delivery methods, including agriculture, health, manufacturing and transportation, explore the use of these methods to make their courses and programs more accessible to students, particularly working adults. In some instances, colleges were partnering with specific companies to ensure that groups of employees were completing online coursework leading to a certificate or a degree. Those partnerships are to be encouraged in order for the state to continue to improve the skills of its workforce. Finally, it is recommended that specific colleges specialize in the delivery of specific programs using online technology since it is not bound by geographic considerations. This approach would take advantage of the strengths of the individual colleges and avoid unnecessary duplication.

Keywords: career and technical education, online learning, skills shortage, technical colleges

Procedia PDF Downloads 136
2034 Evaluation of Sustained Improvement in Trauma Education Approaches for the College of Emergency Nursing Australasia Trauma Nursing Program

Authors: Pauline Calleja, Brooke Alexander

Abstract:

In 2010 the College of Emergency Nursing Australasia (CENA) undertook sole administration of the Trauma Nursing Program (TNP) across Australia. The original TNP was developed from recommendations by the Review of Trauma and Emergency Services-Victoria. While participant and faculty feedback about the program was positive, issues were identified that were common for industry training programs in Australia. These issues included didactic approaches, with many lectures and little interaction/activity for participants. Participants were not necessarily encouraged to undertake deep learning due to the teaching and learning principles underpinning the course, and thus participants described having to learn by rote, and only gain a surface understanding of principles that were not always applied to their working context. In Australia, a trauma or emergency nurse may work in variable contexts that impact on practice, especially where resources influence scope and capacity of hospitals to provide trauma care. In 2011, a program review was undertaken resulting in major changes to the curriculum, teaching, learning and assessment approaches. The aim was to improve learning including a greater emphasis on pre-program preparation for participants, the learning environment and clinically applicable contextualized outcomes participants experienced. Previously if participants wished to undertake assessment, they were given a take home examination. The assessment had poor uptake and return, and provided no rigor since assessment was not invigilated. A new assessment structure was enacted with an invigilated examination during course hours. These changes were implemented in early 2012 with great improvement in both faculty and participant satisfaction. This presentation reports on a comparison of participant evaluations collected from courses post implementation in 2012 and in 2015 to evaluate if positive changes were sustained. Methods: Descriptive statistics were applied in analyzing evaluations. Since all questions had more than 20% of cells with a count of <5, Fisher’s Exact Test was used to identify significance (p = <0.05) between groups. Results: A total of fourteen group evaluations were included in this analysis, seven CENA TNP groups from 2012 and seven from 2015 (randomly chosen). A total of 173 participant evaluations were collated (n = 81 from 2012 and 92 from 2015). All course evaluations were anonymous, and nine of the original 14 questions were applicable for this evaluation. All questions were rated by participants on a five-point Likert scale. While all items showed improvement from 2012 to 2015, significant improvement was noted in two items. These were in regard to the content being delivered in a way that met participant learning needs and satisfaction with the length and pace of the program. Evaluation of written comments supports these results. Discussion: The aim of redeveloping the CENA TNP was to improve learning and satisfaction for participants. These results demonstrate that initial improvements in 2012 were able to be maintained and in two essential areas significantly improved. Changes that increased participant engagement, support and contextualization of course materials were essential for CENA TNP evolution.

Keywords: emergency nursing education, industry training programs, teaching and learning, trauma education

Procedia PDF Downloads 272
2033 Cultural Landscape Planning – A Case of Chettinad Village Clusters

Authors: Adhithy Menon E., Biju C. A.

Abstract:

In the 1960s, the concept of preserving heritage monuments was first introduced. During the 1990s, the concept of cultural landscapes gained importance, highlighting the importance of culture and heritage. Throughout this paper, we examine the second category of the cultural landscape, which is an organically evolving landscape as it represents a web of tangible, intangible, and ecological heritage and the ways in which they can be rejuvenated. Cultural landscapes in various regions, such as the Chettinad Village clusters, are in serious decline, which is identified through the Heritage Passport program of this area (2007). For this reason, it is necessary to conduct a detailed analysis of the factors that contribute to this degradation to ensure its protection in the future. An analysis of the cultural landscape of the Chettinad Village clusters and its impact on the community is presented in this paper. The paper follows the first objective, which is to understand cultural landscapes and their different criteria and categories. It is preceded by the study of various methods for protecting cultural landscapes. To identify a core area of intervention based on the parameters of Cultural Landscapes and Community Based Tourism, a study and analysis of the regional context of Chettinad village clusters considering tourism development must first be conducted. Lastly, planning interventions for integrating community-based tourism in Chettinad villages for the purpose of rejuvenating the cultural landscapes of the villages as well as their communities. The major findings include the importance of the local community in protecting cultural landscapes. The parameters identified to have an impact on Chettinad Village clusters are a community (community well-being, local maintenance, and enhancement, demand, alternative income for community, public participation, awareness), tourism (location and physical access, journey time, tourist attractions), integrity (natural factors, natural disasters, demolition of structures, deterioration of materials) authenticity (sense of place, living elements, building techniques, artistic expression, religious context) disaster management (natural disasters) and environmental impact (pollution). This area can be restored to its former glory and preserved as part of the cultural landscape for future generations by focusing on and addressing these parameters within the identified core area of the Chettinad Villages cluster (Kanadukathan TP, Kothamangalam, Kottaiyur, Athangudi, Karikudi, and Palathur).

Keywords: Chettinad village clusters, community, cultural landscapes, organically evolved.

Procedia PDF Downloads 82
2032 Divergence of Innovation Capabilities within the EU

Authors: Vishal Jaunky, Jonas Grafström

Abstract:

The development of the European Union’s (EU) single economic market and rapid technological change has resulted in major structural changes in EU’s member states economies. The general liberalization process that the countries has undergone together has convinced the governments of the member states of need to upgrade their economic and training systems in order to be able to face the economic globalization. Several signs of economic convergence have been found but less is known about the knowledge production. This paper addresses the convergence pattern of technological innovation in 13 European Union (EU) states over the time period 1990-2011 by means of parametric and non-parametric techniques. Parametric approaches revolve around the neoclassical convergence theories. This paper reveals divergence of both the β and σ types. Further, we found evidence of stochastic divergence and non-parametric convergence approach such as distribution dynamics shows a tendency towards divergence. This result is supported with the occurrence of γ-divergence. The policies of the EU to reduce technological gap among its member states seem to be missing its target, something that can have negative long run consequences for the market.

Keywords: convergence, patents, panel data, European union

Procedia PDF Downloads 288
2031 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
2030 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 33
2029 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks

Authors: Mahdi Bazarganigilani

Abstract:

Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.

Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks

Procedia PDF Downloads 162
2028 The Design of the Multi-Agent Classification System (MACS)

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spread-sheet developers competency over a network. It is designed to automatically and autonomously monitor spread-sheet users and gather their development activities based on the utilization of the software Multi-Agent Technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spread-sheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.

Keywords: classification, design, MACS, MAS, prometheus

Procedia PDF Downloads 399
2027 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
2026 Project Management at University: Towards an Evaluation Process around Cooperative Learning

Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R

Abstract:

The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.

Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training

Procedia PDF Downloads 170
2025 Rotational and Linear Accelerations of an Anthropometric Test Dummy Head from Taekwondo Kicks among Amateur Practitioners

Authors: Gabriel P. Fife, Saeyong Lee, David M. O'Sullivan

Abstract:

Introduction: Although investigations into injury characteristics are represented well in the literature, few have investigated the biomechanical characteristics associated with head impacts in Taekwondo. Therefore, the purpose of this study was to identify the kinematic characteristics of head impacts due to taekwondo kicks among non-elite practitioners. Participants: Male participants (n= 11, 175 + 5.3 cm, 71 + 8.3 kg) with 7.5 + 3.6 years of taekwondo training volunteered for this study. Methods: Participants were asked to perform five repetitions of each technique (i.e., turning kick, spinning hook kick, spinning back kick, front axe kick, and clench axe kick) aimed at the Hybrid III head with their dominant kicking leg. All participants wore a protective foot pad (thickness = 12 mm) that is commonly used in competition and training. To simulate head impact in taekwondo, the target consisted of a Hybrid III 50th Percentile Crash Test Dummy (Hybrid III) head (mass = 5.1 kg) and neck (fitted with taekwondo headgear) secured to an aluminum support frame and positioned to each athlete’s standing height. The Hybrid III head form was instrumented with a 500 g tri-axial accelerometer (PCB Piezotronics) mounted to the head center of gravity to obtain resultant linear accelerations (RLA). Rotational accelerations were collected using three angular rate sensors mounted orthogonally to each other (Diversified Technical Systems ARS-12 K Angular Rate Sensor). The accelerometers were interfaced via a 3-channel, battery-powered integrated circuit piezoelectric sensor signal conditioner (PCB Piezotronics) and connected to a desktop computer for analysis. Acceleration data were captured using LABVIEW Signal Express and processed in accordance with SAE J211-1 channel frequency class 1000. Head injury criteria values (HIC) were calculated using the VSRSoftware. A one-way analysis of variance was used to determine differences between kicks, while the Tukey HSD test was employed for pairwise comparisons. The level of significance was set to an effect size of 0.20. All statistical analyses were done using R 3.1.0. Results: A statistically significant difference was observed in RLA (p = 0.00075); however, these differences were not clinically meaningful (η² = 0.04, 95% CI: -0.94 to 1.03). No differences were identified with ROTA (p = 0.734, η² = 0.0004, 95% CI: -0.98 to 0.98). A statistically significant difference (p < 0.001) between kicks in HIC was observed, with a medium effect (η2= 0.08, 95% CI: -0.98 to 1.07). However, the confidence interval of this difference indicates uncertainty. Tukey HSD test identified differences (p < 0.001) between kicking techniques in RLA and HIC. Conclusion: This study observed head impact levels that were comparable to previous studies of similar objectives and methodology. These data are important as impact measures from this study may be more representative of impact levels experienced by non-elite competitors. Although the clench axe kick elicited a lower RLA, the ROTA of this technique was higher than levels from other techniques (although not large differences in reference to effect sizes). As the axe kick has been reported to cause severe head injury, future studies may consider further study of this kick important.

Keywords: Taekwondo, head injury, biomechanics, kicking

Procedia PDF Downloads 28
2024 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing

Procedia PDF Downloads 176
2023 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
2022 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
2021 The Effects of Aging on Visuomotor Behaviors in Reaching

Authors: Mengjiao Fan, Thomson W. L. Wong

Abstract:

It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.

Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration

Procedia PDF Downloads 312
2020 The Impact of Step-By-Step Program in the Public Preschool Institutions in Kosova

Authors: Rozafa Shala

Abstract:

Development of preschool education in Kosovo has passed through several periods. The period after the 1999 war was very intensive period when preschool education started to change. Step-by-step program was one of the programs which were very well extended during the period after the 1999 war until now. The aim of this study is to present the impact of the step-by-step program in the preschool education. This research is based on the hypothesis that: Step-by-step program continues to be present with its elements, in all other programs that the teachers can use. For data collection a questionnaire is constructed which was distributed to 25 teachers of preschool education who work in public preschool institutions. All the teachers have finished the training for step by step program. To support the data from the questionnaire a focus group is also organized with whom the critical issues of the program were discussed. From the results obtained we can conclude that the step-by-step program has a very strong impact in the preschool level. Many specific elements such as: circle time, weather calendar, environment inside the class, portfolios and many other elements are present in most of the preschool classes. The teacher's approach also has many elements of the step-by-step program.

Keywords: preschool education, step-by-step program, impact, teachers

Procedia PDF Downloads 350