Search results for: culturally appropriate design principles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14252

Search results for: culturally appropriate design principles

11792 Learning Academic Skills through Movement: A Case Study in Evaluation

Authors: Y. Salfati, D. Sharef Bussel, J. Zamir

Abstract:

In this paper, we present an Evaluation Case Study implementing the eight principles of Collaborative Approaches to Evaluation (CAE) as designed by Brad Cousins in the past decade. The focus of this paper is sharing a rich experience in which we achieved two main goals. The first was the development of a valuable and meaningful new teacher training program, and the second was a successful implementation of the CAE principles. The innovative teacher training program is based on the idea of including physical movement during the process of teaching and learning academic themes. The program is called Learning through Movement. This program is a response to a call from the Ministry of Education, claiming that today children sit in front of screens and do not exercise any physical activity. In order to contribute to children’s health, physical, and cognitive development, the Ministry of Education promotes learning through physical activities. Research supports the idea that sports and physical exercise improve academic achievements. The Learning through Movement program is operated by Kaye Academic College. Students in the Elementary School Training Program, together with students in the Physical Education Training Program, implement the program in collaboration with two mentors from the College. The program combines academic learning with physical activity. The evaluation began at the beginning of the program. During the evaluation process, data was collected by means of qualitative tools, including interviews with mentors, observations during the students’ collaborative planning, class observations at school and focus groups with students, as well as the collection of documentation related to the teamwork and to the program itself. The data was analyzed using content analysis and triangulation. The preliminary results show outcomes relating to the Teacher Training Programs, the student teachers, the pupils in class, the role of Physical Education teachers, and the evaluation. The Teacher Training Programs developed a collaborative approach to lesson planning. The students' teachers demonstrated a change in their basic attitudes towards the idea of integrating physical activities during the lessons. The pupils indicated higher motivation through full participation in classes. These three outcomes are indicators of the success of the program. An additional significant outcome of the program relates to the status and role of the physical education teachers, changing their role from marginal to central in the school. Concerning evaluation, a deep sense of trust and confidence was achieved, between the evaluator and the whole team. The paper includes the perspectives and challenges of the heads and mentors of the two programs as well as the evaluator’s conclusions. The evaluation unveils challenges in conducting a CAE evaluation in such a complex setting.

Keywords: collaborative evaluation, training teachers, learning through movement

Procedia PDF Downloads 146
11791 From Design, Experience and Play Framework to Common Design Thinking Tools: Using Serious Modern Board Games

Authors: Micael Sousa

Abstract:

Board games (BGs) are thriving as new designs emerge from the hobby community to greater audiences all around the world. Although digital games are gathering most of the attention in game studies and serious games research fields, the post-digital movement helps to explain why in the world dominated by digital technologies, the analog experiences are still unique and irreplaceable to users, allowing innovation in new hybrid environments. The BG’s new designs are part of these post-digital and hybrid movements because they result from the use of powerful digital tools that enable the production and knowledge sharing about the BGs and their face-to-face unique social experiences. These new BGs, defined as modern by many authors, are providing innovative designs and unique game mechanics that are still not yet fully explored by the main serious games (SG) approaches. Even the most established frameworks settled to address SG, as fun games implemented to achieve predefined goals need more development, especially when considering modern BGs. Despite the many anecdotic perceptions, researchers are only now starting to rediscover BGs and demonstrating their potentials. They are proving that BGs are easy to adapt and to grasp by non-expert players in experimental approaches, with the possibility of easy-going adaptation to players’ profiles and serious objectives even during gameplay. Although there are many design thinking (DT) models and practices, their relations with SG frameworks are also underdeveloped, mostly because this is a new research field, lacking theoretical development and the systematization of the experimental practices. Using BG as case studies promise to help develop these frameworks. Departing from the Design, Experience, and Play (DPE) framework and considering the Common Design Think Tools (CDST), this paper proposes a new experimental framework for the adaptation and development of modern BG design for DT: the Design, Experience, and Play for Think (DPET) experimental framework. This is done through the systematization of the DPE and CDST approaches applied in two case studies, where two different sequences of adapted BG were employed to establish a DT collaborative process. These two sessions occurred with different participants and in different contexts, also using different sequences of games for the same DT approach. The first session took place at the Faculty of Economics at the University of Coimbra in a training session of serious games for project development. The second session took place in the Casa do Impacto through The Great Village Design Jam light. Both sessions had the same duration and were designed to progressively achieve DT goals, using BGs as SGs in a collaborative process. The results from the sessions show that a sequence of BGs, when properly adapted to address the DPET framework, can generate a viable and innovative process of collaborative DT that is productive, fun, and engaging. The DPET proposed framework intents to help establish how new SG solutions could be defined for new goals through flexible DT. Applications in other areas of research and development can also benefit from these findings.

Keywords: board games, design thinking, methodology, serious games

Procedia PDF Downloads 112
11790 Artificial Intelligence in the Design of a Retaining Structure

Authors: Kelvin Lo

Abstract:

Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.

Keywords: automation, numerical modelling, Python, retaining structures

Procedia PDF Downloads 51
11789 Impact of Stack Caches: Locality Awareness and Cost Effectiveness

Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang

Abstract:

Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.

Keywords: hit rate, locality of program, stack cache, stack data

Procedia PDF Downloads 303
11788 Environmental Life Cycle Assessment of Circular, Bio-Based and Industrialized Building Envelope Systems

Authors: N. Cihan KayaçEtin, Stijn Verdoodt, Alexis Versele

Abstract:

The construction industry is accounted for one-third of all waste generated in the European Union (EU) countries. The Circular Economy Action Plan of the EU aims to tackle this issue and aspires to enhance the sustainability of the construction industry by adopting more circular principles and bio-based material use. The Interreg Circular Bio-Based Construction Industry (CBCI) project was conceived to research how this adoption can be facilitated. For this purpose, an approach is developed that integrates technical, legal and social aspects and provides business models for circular designing and building with bio-based materials. In the scope of the project, the research outputs are to be displayed in a real-life setting by constructing a demo terraced single-family house, the living lab (LL) located in Ghent (Belgium). The realization of the LL is conducted in a step-wise approach that includes iterative processes for design, description, criteria definition and multi-criteria assessment of building components. The essence of the research lies within the exploratory approach to the state-of-art building envelope and technical systems options for achieving an optimum combination for a circular and bio-based construction. For this purpose, nine preliminary designs (PD) for building envelope are generated, which consist of three basic construction methods: masonry, lightweight steel construction and wood framing construction supplemented with bio-based construction methods like cross-laminated timber (CLT) and massive wood framing. A comparative analysis on the PDs was conducted by utilizing several complementary tools to assess the circularity. This paper focuses on the life cycle assessment (LCA) approach for evaluating the environmental impact of the LL Ghent. The adoption of an LCA methodology was considered critical for providing a comprehensive set of environmental indicators. The PDs were developed at the component level, in particular for the (i) inclined roof, (ii-iii) front and side façade, (iv) internal walls and (v-vi) floors. The assessment was conducted on two levels; component and building level. The options for each component were compared at the first iteration and then, the PDs as an assembly of components were further analyzed. The LCA was based on a functional unit of one square meter of each component and CEN indicators were utilized for impact assessment for a reference study period of 60 years. A total of 54 building components that are composed of 31 distinct materials were evaluated in the study. The results indicate that wood framing construction supplemented with bio-based construction methods performs environmentally better than the masonry or steel-construction options. An analysis on the correlation between the total weight of components and environmental impact was also conducted. It was seen that masonry structures display a high environmental impact and weight, steel structures display low weight but relatively high environmental impact and wooden framing construction display low weight and environmental impact. The study provided valuable outputs in two levels: (i) several improvement options at component level with substitution of materials with critical weight and/or impact per unit, (ii) feedback on environmental performance for the decision-making process during the design phase of a circular single family house.

Keywords: circular and bio-based materials, comparative analysis, life cycle assessment (LCA), living lab

Procedia PDF Downloads 183
11787 Discussing the Values of Collective Memory and Cultural / Rural Landscape Based on the Concept of Eco-Village; Case of Turkey, Gölpazarı, Kurşunlu Village

Authors: Parisa Göker, Hilal Kahveci, Özlem Candan Hergül

Abstract:

Humans are generating culture while being in touch with nature. Along with skills, local knowledge based on experience, and many other subjects developed within this process, 'culture' offers humans a chance to survive. For this reason, culture forms the equipment for humans, which facilitates their survival in all ecosystems. Together with technology, quick consumption of natural sources and overuse culture of humans have brought up the eco-village concept. Ecovillages are ecologically, economically, socio-culturally, and spiritually sustainable settlement models. It is known that the eco-village approach is applying a proper methodology on behalf of integrative and versatile solution generation. Today, the eco-village approach, introducing a radical criticism to the understanding of civilization and consumption culture and deeming urban solutions inadequate as a spatial reflection to civilization and consumption culture, while making a difference about integrative solution offering with multidimensional features, along with the goal of creating self-sufficient communities, is creating solutions on the subject of both reducing the ecological footprint of humans and to provide social order and also to solve the injustice seen in terms of income and life standards. In this study, environmental issues, sustainable development, and environmental sustainability topics are examined within the context of eco-tourism and eco-village. Alongside this, the natural and cultural landscape values of Kurşunlu village which are located in Bilecik province’s Gölpazarı county, and a contextual frame is created for the facilitation of sustainability in the event of dynamizing the Kurşunlu village in terms of tourism-oriented activities.

Keywords: eco village, sustainability, rural landscape, cultural landscape

Procedia PDF Downloads 140
11786 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 254
11785 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries

Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem

Abstract:

This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 448
11784 Interface Problems in Construction Projects

Authors: Puti F. Marzuki, Adrianto Oktavianus, Almerinda Regina

Abstract:

Interface problems among interacting parties in Indonesian construction projects have most often led to low productivity and completion delay. In the midst of this country’s needs to accelerate construction of public infrastructure providing connectivity among regions and supporting economic growth as well as better living quality, project delays have to be seriously addressed. This paper identifies potential causes factors of interface problems experienced by construction projects in Indonesia. Data are collected through a survey involving the main actors of six important public infrastructure construction projects including railway, LRT, sports stadiums, apartment, and education building construction projects. Five of these projects adopt the design-build project delivery method and one applies the design-bid-build scheme. Interface problems’ potential causes are categorized into contract, management, technical experience, coordination, financial, and environmental factors. Research results reveal that, especially in railway and LRT projects, potential causes of interface problems are mainly technical and managerial in nature. These relate to complex construction execution in highly congested areas. Meanwhile, coordination cause factors are mainly found in the education building construction project with loan from a foreign donor. All of the six projects have to resolve interface problems caused by incomplete or low-quality contract documents. This research also shows that the design-bid-build delivery method involving more parties in construction projects tends to induce more interface problem cause factors than the design-build scheme.

Keywords: cause factors, construction delays, project delivery method, contract documents

Procedia PDF Downloads 256
11783 Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors

Authors: H. Fekhar

Abstract:

Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error.

Keywords: microcontrollers, sensors, graphic liquid cristal display, protocol, temperature, pressure

Procedia PDF Downloads 460
11782 Optimized Design, Material Selection, and Improvement of Liners, Mother Plate, and Stone Box of a Direct Charge Transfer Chute in a Sinter Plant: A Computational Approach

Authors: Anamitra Ghosh, Neeladri Paul

Abstract:

The present work aims at investigating material combinations and thereby improvising an optimized design of liner-mother plate arrangement and that of the stone box, such that it has low cost, high weldability, sufficiently capable of withstanding the increased amount of corrosive shear and bending loads, and having reduced thermal expansion coefficient at temperatures close to 1000 degrees Celsius. All the above factors have been preliminarily examined using a computational approach via ANSYS Thermo-Structural Computation, a commercial software that uses the Finite Element Method to analyze the response of simulated design specimens of liner-mother plate arrangement and the stone box, to varied bending, shear, and thermal loads as well as to determine the temperature gradients developed across various surfaces of the designs. Finally, the optimized structural designs of the liner-mother plate arrangement and that of the stone box with improved material and better structural and thermal properties are selected via trial-and-error method. The final improvised design is therefore considered to enhance the overall life and reliability of a Direct Charge Transfer Chute that transfers and segregates the hot sinter onto the cooler in a sinter plant.

Keywords: shear, bending, thermal, sinter, simulated, optimized, charge, transfer, chute, expansion, computational, corrosive, stone box, liner, mother plate, arrangement, material

Procedia PDF Downloads 109
11781 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey

Authors: Yavuz Yardım

Abstract:

The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.

Keywords: earthquake, seismic assessment, RC buildings, building performance

Procedia PDF Downloads 264
11780 Adhering to the Traditional Standard of Originality in the Era of Artificial Intelligence Copyright Protection

Authors: Xiaochen Mu

Abstract:

Whether in common law countries that adhere to the "commercial copyright theory" or in civil law countries that center around "author's rights," the standards for judging originality have undergone continuous adjustments in response to the development of information technology. The adherence to originality standards does not arbitrarily dictate that all types of works be judged according to a single standard of originality, nor does it rigidly ignore the changes in creative methods and dissemination models brought about by technology. Adjustments and interpretations should be allowed based on the different forms of expression of works. Appropriate adjustments and interpretations are our response to technological advancements. However, what should be upheld are the principles and bottom lines of these adjustments and interpretations, namely the legislative intent and purpose of copyright law, which are to encourage the creation and dissemination of outstanding cultural works and to promote the flourishing of culture.

Keywords: generative artificial intelligence, originality, works, copyright

Procedia PDF Downloads 42
11779 Facility Layout Improvement: Based on Safety and Health at Work and Standards of Food Production Facility

Authors: Asifa Fitriani, Galih Prakoso

Abstract:

This study aims to improve the design layout of a Micro, Small and Medium Enterprises (SMEs) to minimize material handling and redesigning the layout of production facilities based on the safety and health and standards of food production facilities. Problems layout in the one of chip making industry mushrooms in Indonesia is cross movement between work stations, work accidents, and the standard of facilities that do not conform with the standards of the food industry. Improvement layout design using CORELAP and 5S method to give recommendation and implementation of occupational health and safety standards of food production facilities. From the analysis, improved layout using CORELAP provide a smaller displacement distance is 155.84 meters from the initial displacement distance of 335.9 meters, and providing a shorter processing time than the original 112.726 seconds to 102.831 seconds. 5S method also has recommended the completion of occupational health and safety issues as well as the standard means of food production by changing the working environment better.

Keywords: Layout Design, Corelap, 5S

Procedia PDF Downloads 533
11778 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.

Keywords: emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology

Procedia PDF Downloads 383
11777 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 507
11776 Symbolic Status of Architectural Identity: Example of Famagusta Walled City

Authors: Rafooneh Mokhtarshahi Sani

Abstract:

This study explores how the residents of a conserved urban area have used goods and ideas as resources to maintain an enviable architectural identity. Whereas conserved urban quarters are seen as role model for maintaining architectural identity, the article describes how their residents try to give a contemporary modern image to their homes. It is argued that despite the efforts of authorities and decision makers to keep and preserve the traditional architectural identity in conserved urban areas, people have already moved on and have adjusted their homes with their preferred architectural taste. Being through such conflict of interests, have put the future of architectural identity in such places at risk. The thesis is that, on the one hand, such struggle over a desirable symbolic status in identity formation is taking place, and, on the other, it is continuously widening the gap between the real and ideal identity in the built environment. The study then analytically connects the concept of symbolic status to current identity debates. As an empirical research, this study uses systematic social and physical observation methods to describe and categorize the characteristics of settlements in Walled City of Famagusta, which symbolically represent the modern houses. The Walled City is a cultural heritage site, which most of its urban context has been conserved. Traditional houses in this area demonstrate the identity of North Cyprus architecture. The conserved residential buildings, however, either has been abandoned or went through changes by their users to present the ideal image of contemporary life. In the concluding section, the article discusses the differences between the symbolic status of people and authorities in defining a culturally valuable contemporary home. And raises the question of whether we can talk at all about architectural identity in terms of conserving the traditional style, and how we may do so on the basis of dynamic nature of identity and the necessity of its acceptance by the users.

Keywords: symbolic status, architectural identity, conservation, facades, Famagusta walled city

Procedia PDF Downloads 357
11775 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes

Authors: Ehsan Sadie

Abstract:

Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.

Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure

Procedia PDF Downloads 73
11774 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 374
11773 A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators

Authors: Khuram Shahzad, Omar Usman Khan

Abstract:

Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.

Keywords: quantum comparator, quantum algorithm, space-efficient comparator, comparator

Procedia PDF Downloads 16
11772 Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member

Authors: K. Raghu, Altafhusen P. Pinjar

Abstract:

Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold‐formed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05.

Keywords: direct strength, cold formed, perforations, CUFSM

Procedia PDF Downloads 380
11771 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability

Authors: Yasaman Esfandiari

Abstract:

Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.

Keywords: design, gears, Matlab, optimization

Procedia PDF Downloads 240
11770 Brief Review of the Self-Tightening, Left-Handed Thread

Authors: Robert S. Giachetti, Emanuele Grossi

Abstract:

Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.

Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening

Procedia PDF Downloads 136
11769 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 143
11768 Removing the Veils of Caste from the Face of Islam in the Sub-Continent

Authors: Elaheh Ghasempour

Abstract:

India has always been an all-encompassing center of attention in the theological and cultural studies since it beholds a very diverse nation within its borders. Among the uncountable faiths and traditions of this massive land, this article shall negotiate Islam in a Hindu dominated society. Practicing Caste and the views on it are the most controversial topics in modern-day India. Some blame it on the teachings of Hinduism; some call it a colonial outcome; and yet many believe that it is, in fact, a social construct. Islam was the souvenir coming from the Arabian Peninsula into the Indian Subcontinent in the hands of Arab, Persian, and Turk religious missionaries and Sufi saints. The aim of bringing the faith to this region was to enlighten the people of East and the Far East with the ideas of peace, justice, brotherhood as well as a proper way of living. Due to many reasons, the concept of the Islamic Nation or ‘Ummah’ has been touched by the native teachings of Hinduism which negates and questions the actual Islamic principles and laws. The Islamic Nation in India has been parted to different classes and each class nowadays beholds one level of a hierarchy. The superiors do not hesitate to keep the inferiors oppressed as much as they can since their own high position in this hierarchy depends on such oppressions. Their rules and laws to keep the lower castes out of the political and economical scene found ways into the religious traditions so much that it has become hard to question it by the masses; the masses who are too uneducated to question their own heretical faith and traditions. But now that the world is rapidly evolving, the access to knowledge has evoked an awareness of many lower caste or ‘Dalit’ Muslims. They no longer wish to be oppressed for their ethnicity or rootless principles of the old generations to guarantee the survival of the higher caste Muslims or ‘Ashrafs’. In recent years, many have stood against the rules of the caste system. As the oppressed no longer wishes to be oppressed, they also show acts of violence against the rulers who destined them the life they currently have. Considering they are usually poor and uneducated, and they might do violent actions, this can threaten not only Indians but the whole world; especially because the ISIS can easily fund a troop of hungry men who are looking forward to revenge their masters and others for all the unjust discriminations. Therefore for the sake of social security and stopping the disrepute for followers of Islam, the entire Islamic nation must consider taking actions against practicing Caste, regardless of where they come from. Since the teachings of the Quran and the Sunnah of the Prophet (PBUH) invite all Muslims to practice equality and brotherhood in the Ummah, this article would find the practical ways to abolish the caste-system through the Islamic liturgical texts and traditions.

Keywords: Dalit Muslims, Islam in India, caste system, justice in Islam, violence

Procedia PDF Downloads 208
11767 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper

Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng

Abstract:

Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.

Keywords: liquid crystal elastomers, microgripper, smart materials, robotics

Procedia PDF Downloads 140
11766 Seismic Considerations in Case Study of Kindergartens Building Design: Ensuring Safety and Structural Integrity

Authors: Al-Naqdi Ibtehal Abdulmonem

Abstract:

Kindergarten buildings are essential for early childhood education, providing a secure environment for children's development. However, they are susceptible to seismic forces, which can endanger occupants during earthquakes. This article emphasizes the importance of conducting thorough seismic analysis and implementing proper structural design to protect the well-being of children, staff, and visitors. By prioritizing structural integrity and considering functional requirements, engineers can mitigate risks associated with seismic events. The use of specialized software like ETABS is crucial for designing earthquake-resistant kindergartens. An analysis using ETABS software compared the structural performance of two single-story kindergartens in Iraq's Ministry of Education, designed with and without seismic considerations. The analysis aimed to assess the impact of seismic design on structural integrity and safety. The kindergarten was designed with seismic considerations, including moment frames. In contrast, the same kindergarten was analyzed without seismic effects, revealing a lack of structural elements to resist lateral forces, rendering it vulnerable to structural failure during an earthquake. Maximum major shear increased over 4 times and over 5 times for bending moment in both kindergartens designed with seismic considerations induced by lateral loads and seismic forces. This component of shear force is vital for designing elements to resist lateral loads and ensure structural stability.

Keywords: seismic analysis, structural design, lateral loads, earthquake resistance, major shear, ETABS

Procedia PDF Downloads 69
11765 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling

Authors: Sfiso Radebe

Abstract:

The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.

Keywords: convex modelling, hybrid, metal-composite, robust design

Procedia PDF Downloads 211
11764 Modeling of Production Lines Systems with Layout Constraints

Authors: Sadegh Abebi

Abstract:

There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed.

Keywords: Queuing theory, Markov Chain, layout, line balance

Procedia PDF Downloads 625
11763 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets

Authors: Toka M. Abufarag

Abstract:

This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.

Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo

Procedia PDF Downloads 125