Search results for: continuous data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26736

Search results for: continuous data

24276 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 575
24275 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
24274 A Tactic for a Cosmopolitan City Comparison through a Data-Driven Approach: Case of Climate City Networking

Authors: Sombol Mokhles

Abstract:

Tackling climate change requires expanding networking opportunities between a diverse range of cities to accelerate climate actions. Existing climate city networks have limitations in actively engaging “ordinary” cities in networking processes between cities, as they encourage a few powerful cities to be followed by the many “ordinary” cities. To reimagine the networking opportunities between cities beyond global cities, this paper incorporates “cosmopolitan comparison” to expand our knowledge of a diverse range of cities using a data-driven approach. Through a cosmopolitan perspective, a framework is presented on how to utilise large data to expand knowledge of cities beyond global cities to reimagine the existing hierarchical networking practices. The contribution of this framework is beyond urban climate governance but inclusive of different fields which strive for a more inclusive and cosmopolitan comparison attentive to the differences across cities.

Keywords: cosmopolitan city comparison, data-driven approach, climate city networking, urban climate governance

Procedia PDF Downloads 111
24273 [Keynote Speech]: Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: constriction, pressure drop, turbulence, water-in-oil emulsions

Procedia PDF Downloads 335
24272 An Optimal Algorithm for Finding (R, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (R, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (R, Q) policy which minimizes the expected system costs .

Keywords: (R, Q) policy, stochastic demand, backorders, limited resource, quantity discounts

Procedia PDF Downloads 641
24271 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 323
24270 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
24269 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships

Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming

Abstract:

The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.

Keywords: space lab, rendezvous and docking, data management, software system

Procedia PDF Downloads 368
24268 Evolution of Plio/Pleistocene Sedimentary Processes in Patraikos Gulf, Offshore Western Greece

Authors: E. K. Tripsanas, D. Spanos, I. Oikonomopoulos, K. Stathopoulou, A. S. Abdelsamad, A. Pagoulatos

Abstract:

Patraikos Gulf is located offshore western Greece, and it is limited to the west by the Zante, Cephalonia, and Lefkas islands. The Plio/Pleistocene sequence is characterized by two depocenters, the east and west Patraikos basins separated from each other by a prominent sill. This study is based on the Plio/Pleistocene seismic stratigraphy analysis of a newly acquired 3D PSDM (Pre-Stack depth migration) seismic survey in the west Patraikos Basin and few 2D seismic profiles throughout the entire Patraikos Gulf. The eastern Patraikos Basin, although completely buried today with water depths less than 100 m, it was a deep basin during Pliocene ( > 2 km of Pliocene-Pleistocene sediments) and appears to have gathered most of Achelous River discharges. The west Patraikos Gulf was shallower ( < 1300 m of Pliocene-Pleistocene sediments) and characterized by a hummocky relief due to thrust-belt tectonics and Miocene to Pleistocene halokinetic processes. The transition from Pliocene to Miocene is expressed by a widespread erosional unconformity with evidence of fluvial drainage patterns. This indicates that west Patraikos Basin was aerially exposed during the Messinian Salinity Crisis. Continuous to semi-continuous, parallel reflections in the lower, early- to mid-Pliocene seismic packet provides evidence that the re-connection of the Mediterranean Sea with the Atlantic Ocean during Zanclean resulted in the flooding of the west Patraikos basin and the domination of hemipelagic sedimentation interrupted by occasional gravity flows. This is evident in amplitude and semblance horizon slices, which clearly show the presence of long-running, meandering submarine channels sourced from the southeast (northwest Peloponnese) and north. The long-running nature of the submarine channels suggests mobile efficient turbidity currents, probably due to the participation of a sufficient amount of clay minerals in their suspended load. The upper seismic section in the study area mainly consists of several successions of clinoforms, interpreted as progradational delta complexes of Achelous River. This sudden change from marine to shallow marine sedimentary processes is attributed to climatic changes and eustatic perturbations since late Pliocene onwards (~ 2.6 Ma) and/or a switch of Achelous River from the east Patraikos Basin to the west Patraikos Basin. The deltaic seismic unit consists of four delta complexes. The first two complexes result in the infill of topographic depressions and smoothing of an initial hummocky bathymetry. The distribution of the upper two delta complexes is controlled by compensational stacking. Amplitude and semblance horizon slices depict the development of several almost straight and short (a few km long) distributary submarine channels at the delta slopes and proximal prodeltaic plains with lobate sand-sheet deposits at their mouths. Such channels are interpreted to result from low-efficiency turbidity currents with low content in clay minerals. Such a differentiation in the nature of the gravity flows is attributed to the switch of the sediment supply from clay-rich sediments derived from the draining of flysch formations of the Ionian and Gavrovo zones, to the draining of poor in clay minerals carbonate formations of Gavrovo zone through the Achelous River.

Keywords: sequence stratigraphy, basin analysis, river deltas, submarine channels

Procedia PDF Downloads 322
24267 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 163
24266 Establishment and Improvement of Oil Palm Liquid Culture for Clonal Propagation

Authors: Mohd Naqiuddin Bin Husri, Siti Rahmah Abd Rahman, Dalilah Abu Bakar, Dayang Izawati Abang Masli, Meilina Ong Abdullah

Abstract:

A serious shortage of prime agricultural land coupled with environmental concerns inland expansion has daunted efforts to increase the national yield average. To address this issue, maximising yield per unit hectare through quality planting material is of great importance. Breeding for improved planting materials has been a continuous effort since the early days of this industry, it is time-consuming, and the likelihood of segregation within the progenies further impedes progress in this area. Incorporation of the cloning technology in oil palm breeding programmes is therefore advantageous to expedite the development of commercial elite and high-yielding planting materials. After more than 22 years of research and development through this project, reliable protocols for liquid/suspension culture systems coupled with various innovative technologies which are effective at promoting proliferation and growth of oil palm culture have been established. Subsequently, clonal palms derived from the suspension culture system were extensively studied in the field, and the results have been encouraging. Clones such as CPS1, CPS2 and a few others recorded superior performance in comparison with D x P standard crosses.

Keywords: tissue culture, suspension culture, oil palm, Elaeis guineensis

Procedia PDF Downloads 192
24265 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR

Procedia PDF Downloads 141
24264 Zooplankton Health Status Monitoring in Bir Mcherga Dam (Tunisia)

Authors: Sabria Barka, Imen Gdara, Zouhour Ouanès, Samia Mouelhi, Monia El Bour, Amel Hamza-Chaffai

Abstract:

Because dams are large semi-closed reservoirs of pollutants originating from numerous anthropogenic activities, they represent a threat to aquatic life and they should be monitored. The present work aims to use freshwater zooplankton (Copepods and Cladocerans) in order to evaluate the environmental health status of Bir M'cherga dam in Tunisia. Animals were collected in situ monthly between October and August. Genotoxicity (micronucleus test), neurotoxicity (acetylcholinesterase, AChE) and oxidative stress (catalase, CAT and malondialdehyde, MDA) biomarkers were analyzed in zooplankton. High frequencies of micronucleus were observed in zooplankton cells during summer. AChE activities were inhibited during early winter and summer. CAT and MDA biomarker levels showed high seasonal variability, suggesting that animals are permanently exposed to multiple oxidative stress. The results of this study suggest that the Bir Mcherga dam is subject to continuous multi-origin stress, probably amplified by abiotic parameters. It is then recommended to urgently monitor freshwater environments in Tunisia, especially those used for irrigation and consumption.

Keywords: Biomonitoring, Bir Mcherga Dam, cladocerans, copepods, freshwater zooplankton, genotoxicity, neurotoxicity, oxidative stress, Tunisia

Procedia PDF Downloads 82
24263 Addressing Differentiation Using Mobile-Assisted Language Learning

Authors: Ajda Osifo, Fatma Elshafie

Abstract:

Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.

Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning

Procedia PDF Downloads 417
24262 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519
24261 Challenging Human Trade in Sub-Saharan Africa and Beyond: A Foresight Approach to Contextualizing and Understanding the Consequences of Sub-Saharan Africa’s Demographic Emergence

Authors: Ricardo Schnug

Abstract:

This paper puts the transnational crime of human trafficking in the context of Sub-Saharan Africa and its quickly growing youth bulge. By mapping recent and concurrent trends and emerging issues, it explores the implications that it has not only for the region itself but also for the greater global dynamics of the issue. Through the application of Causal Layered Analysis to various alternative future scenarios as well as the identification of the core narrative surrounding the international discourse, it is possible to understand more deeply the forces that underlie future trafficking and what change becomes possible. With the provision of a reconstructed narrative that avoids the current blind spots, this research points out the need for a new and organic leadership paradigm that allows for a more holistic and future-oriented inquiry about socio-economic and political change and what it entails for a transnational crime such as human trafficking. 'Ubuntu' as a social and leadership philosophy then, provides the principles needed for creating this path towards a truly preferred future. Furthermore, this paper inspires follow-up research and the continuous monitoring and transdisciplinary research of this region’s demographic emergence as well as its possible consequences that have been explored in this inquiry.

Keywords: causal layered analysis, emerging issues, human trafficking, scenarios, sub-Saharan Africa

Procedia PDF Downloads 192
24260 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 229
24259 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks

Authors: Ebrahim Alrashed

Abstract:

Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.

Keywords: energy-aware routing, reliability, sink-hole attack, WSN

Procedia PDF Downloads 396
24258 Evaluation of European Surveys in the Area of Health and Safety at Work and Identification of New Risks in the Labor Environment

Authors: Alena Dadova, Katarina Holla, Anna Cidlinova, Linda Makovicka Osvaldova, Jiri Vala, Samuel Kockar

Abstract:

Occupational health and safety (ASH) is an area in which procedures and applications are constantly evolving and changing through legislation and new directives and guidelines. In this way, the relevant organizations strive to ensure continuous progress and the advantage of up-to-date information to ensure safety and prevent occupational accidents. Three ESENER surveys have been carried out in the European Union, led by the Agency for Safety and Health at Work (EU-OSHA). On the basis of surveys, it was determined how European workplaces manage risks and how they manage the field of safety and health protection at work. Thousands of companies and organizations in the European Union were involved in the surveys. Organizations and businesses were presented with a questionnaire that focused on the following topics: the impact of general risks on the field of OSH and the possibility of their management, psychosocial risks and other factors such as stress, harassment and bullying, and employee participation in OSH procedures. The article is dedicated to the fundamental conclusions from these surveys and their subsequent connection with the strategic intent of the Strategic Framework of European Union for the years 2021 - 2027. In the conclusion, emerging risks are identified and EU will soon have to deal with them.

Keywords: ESENER, emerging risks, strategic framework in OSH, EU

Procedia PDF Downloads 114
24257 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly

Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto

Abstract:

Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.

Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau

Procedia PDF Downloads 76
24256 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 387
24255 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels

Authors: S. H. Liao, J. M. Huang

Abstract:

The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.

Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics

Procedia PDF Downloads 31
24254 A High Reliable Space-Borne File System with Applications of Device Partition and Intra-Channel Pipeline in Nand Flash

Authors: Xin Li, Ji-Yang Yu, Yue-Hua Niu, Lu-Yuan Wang

Abstract:

As an inevitable chain of the space data acquirement system, space-borne storage system based on Nand Flash has gradually been implemented in spacecraft. In face of massive, parallel and varied data on board, efficient data management become an important issue of storage research. Face to the requirements of high-performance and reliability in Nand Flash storage system, a combination of hardware and file system design can drastically increase system dependability, even for missions with a very long duration. More sophisticated flash storage concepts with advanced operating systems have been researched to improve the reliability of Nand Flash storage system on satellites. In this paper, architecture of file system with multi-channel data acquisition and storage on board is proposed, which obtains large-capacity and high-performance with the combine of intra-channel pipeline and device partition in Nand Flash. Multi-channel data in different rate are stored as independent files with parallel-storage system in device partition, which assures the high-effective and reliable throughput of file treatments. For massive and high-speed data storage, an efficiency assessment model is established to calculate the bandwidth formula of intra-channel pipeline. Information tables designed in Magnetoresistive RAM (MRAM) hold the management of bad block in Nand Flash and the arrangement of file system address for the high-reliability of data storage. During the full-load test, the throughput of 3D PLUS Module 160Gb Nand Flash can reach 120Mbps for store and reach 120Mbps for playback, which efficiently satisfies the requirement of multi-channel data acquisition in Satellite. Compared with previous literature, the results of experiments verify the advantages of the proposed system.

Keywords: device partition architecture, intra-channel pipelining, nand flash, parallel storage

Procedia PDF Downloads 289
24253 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, imbalanced datasets, sampling algorithms, big data

Procedia PDF Downloads 328
24252 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence

Authors: Rajeev Kumar, Harishankar Kumar

Abstract:

Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.

Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence

Procedia PDF Downloads 5
24251 Tourism Satellite Account: Approach and Information System Development

Authors: Pappas Theodoros, Mihail Diakomihalis

Abstract:

Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors and which should be observed and measured to reveal, thus, the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article introduces a system of TSA information that encompasses all the works of the TSA, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer insights into the development and implementation of TSA.

Keywords: tourism satellite account, information system, data-based tourist account, relation database

Procedia PDF Downloads 85
24250 Interoperable Platform for Internet of Things at Home Applications

Authors: Fabiano Amorim Vaz, Camila Gonzaga de Araujo

Abstract:

With the growing number of personal devices such as smartphones, tablets, smart watches, among others, in addition to recent devices designed for IoT, it is observed that residential environment has potential to generate important information about our daily lives. Therefore, this work is focused on showing and evaluating a system that integrates all these technologies considering the context of a smart house. To achieve this, we define an architecture capable of supporting the amount of data generated and consumed at a residence and, mainly, the variety of this data presents. We organize it in a particular cloud containing information about robots, recreational vehicles, weather, in addition to data from the house, such as lighting, energy, security, among others. The proposed architecture can be extrapolated to various scenarios and applications. Through the core of this work, we can define new functionality for residences integrating them with more resources.

Keywords: cloud computing, IoT, robotics, smart house

Procedia PDF Downloads 381
24249 Visualization Tool for EEG Signal Segmentation

Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh

Abstract:

This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.

Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation

Procedia PDF Downloads 398
24248 Identification of Factors and Impacts on the Success of Implementing Extended Enterprise Resource Planning: Case Study of Manufacturing Industries in East Java, Indonesia

Authors: Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana, Widjojo Suprapto

Abstract:

The ERP is integrating all data from various departments within the company into one data base. One department inputs the data and many other departments can access and use the data through the connected information system. As many manufacturing companies in Indonesia implement the ERP technology, many adjustments are to be made to align with the business process in the companies, especially the management policy and the competitive advantages. For companies that are successful in the initial implementation, they still have to maintain the process so that the initial success can develop along with the changing of business processes of the company. For companies which have already implemented the ERP successfully, they are still in need to maintain the system so that it can match up with the business development and changes. The continued success of the extended ERP implementation aims to achieve efficient and effective performance for the company. This research is distributing 100 questionnaires to manufacturing companies in East Java, Indonesia, which have implemented and have going live ERP for over five years. There are 90 returned questionnaires with ten disqualified questionnaires because they are from companies that implement ERP less than five years. There are only 80 questionnaires used as the data, with the response rate of 80%. Based on the data results and analysis with PLS (Partial Least Square), it is obtained that the organization commitment brings impacts to the user’s effectiveness and provides the adequate IT infrastructure. The user’s effectiveness brings impacts to the adequate IT infrastructure. The information quality of the company increases the implementation of the extended ERP in manufacturing companies in East Java, Indonesia.

Keywords: organization commitment, adequate IT infrastructure, information quality, extended ERP implementation

Procedia PDF Downloads 168
24247 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)

Authors: Hatib Shabbir

Abstract:

Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.

Keywords: aiou dts, dts aiou, dts, degree tracking aiou

Procedia PDF Downloads 218