Search results for: automatic image colorization
1026 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 3001025 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)
Procedia PDF Downloads 2091024 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 531023 Mapping of Siltations of AlKhod Dam, Muscat, Sultanate of Oman Using Low-Cost Multispectral Satellite Data
Authors: Sankaran Rajendran
Abstract:
Remote sensing plays a vital role in mapping of resources and monitoring of environments of the earth. In the present research study, mapping and monitoring of clay siltations occurred in the Alkhod Dam of Muscat, Sultanate of Oman are carried out using low-cost multispectral Landsat and ASTER data. The dam is constructed across the Wadi Samail catchment for ground water recharge. The occurrence and spatial distribution of siltations in the dam are studied with five years of interval from the year 1987 of construction to 2014. The deposits are mainly due to the clay, sand, and silt occurrences derived from the weathering rocks of ophiolite sequences occurred in the Wadi Samail catchment. The occurrences of clays are confirmed by minerals identification using ASTER VNIR-SWIR spectral bands and Spectral Angle Mapper supervised image processing method. The presence of clays and their spatial distribution are verified in the field. The study recommends the technique and the low-cost satellite data to similar region of the world.Keywords: Alkhod Dam, ASTER siltation, Landsat, remote sensing, Oman
Procedia PDF Downloads 4371022 Impact of Profitability, Slack Resources and Natural Disasters on China's Corporate Philanthropic Practices
Authors: Nabeel Safdar, Qian Aimin
Abstract:
Corporate philanthropy is important, as the donations have been considered as a source to improve the image of business entity in modern era of high competition. We used data on annual basis from 2000 to 2014 for 1,248 firms listed at Shanghai and Shenzhen stock exchanges. Results for giving firms reveal that there is curve linear relation of profitability and CP, as profitable firms utilize cash in an efficient way and have fewer amounts of slack resource and tradeoff among stakeholder and agency cost made it more justifiable. We found that more profitability does not mean that the cash flows are available, actually good performing firms or profitable firm also good at cash management. Cash is utilized in an effective way by profitable firms, and have fewer extents of slack resources which generate curvilinear relationship of profitability with Corporate Philanthropy. We found that the trend of Corporate Philanthropy also got affected due to natural disasters. Analysis made by innovation, slack resources and directors salary revealed the positive significant relationship. It is not compulsory that firm should be only profitable for engaging in philanthropy rather they should have abundant slack resources to donate.Keywords: corporate philanthropy, free cash flows, natural disasters, profitability
Procedia PDF Downloads 3101021 Teaching Continuities in the Great Books Tradition and Contemporary Popular Culture
Authors: Alex Kizuk
Abstract:
This paper studies the trope or meme of the Siren in terms of what long-standing cultural continuities can be found in college classrooms today. Those who have raised children may remember reading from Hans Christian Anderson's 'The Little Mermaid' (1836), not to mention regaling them with colorful Disneyesque versions when they were younger. Though Anderson tempered the darker first ending of the story to give the little mermaid more agency in her salvation—a prognostic developed in Disney adaptations—nonetheless, the tale pivots on an image of a 'heavenly realm' that the mermaid may eventually come to know or comprehend as a beloved woman on dry land. Only after 300 years, however, may she hope to see that 'which lives forever' and 'rises through thin air, up to the shining stars. Just as [sea-people] rise through the water to see the lands on earth.' What students today can see in this example is a trope of the agonistic soul in a hard-won disembarkation at a harbour of knowledge--where the seeker after truth may come to know through persistence (300 years)—all that is good and true concerning human life. This paper discusses several such examples from the Great Books and popular culture to suggest that teaching in the world of the 21st century could do worse than accede to some such perennial seeking.Keywords: the Great Books, tradition, popular culture, 21st century directions in teaching
Procedia PDF Downloads 1571020 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 931019 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 1321018 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application
Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam
Abstract:
The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength
Procedia PDF Downloads 4491017 Electrical and Structural Properties of Polyaniline-Fullerene Nanocomposite
Authors: M. Nagaraja, H. M. Mahesh, K. Rajanna, M. Z. Kurian, J. Manjanna
Abstract:
In recent years, composites of conjugated polymers with fullerenes (C60) has attracted considerable scientific and technological attention in the field of organic electronics because they possess a novel combination of electrical, optical, ferromagnetic, mechanical and sensor properties. These properties represent major advances in the design of organic electronic devices. With the addition of C60 in the conjugated polymer matrix, the primary photo-excitation of the conjugated polymer undergoes an ultrafast electron transfer, and it has been demonstrated that fullerene molecules may serve as efficient electron acceptors in polymeric solar cells. The present paper includes the systematic studies on the effect of electrical, structural and sensor properties of polyaniline (PANI) matrix by the presence of C60. Polyaniline-fullerene (PANI/C60) composite is prepared by the introduction of fullerene during polymerization of aniline with ammonium persulfate and dodechyl benzene sulfonic acid as oxidant and dopant respectively. FTIR spectroscopy indicated the interaction between PANI and C60. X-ray diffraction proved the formation of a PANI/C60 complex. SEM image shows the highly branched chain structure of the PANI in the presence of C60. The conductivity of the PANI/C60 was found to be more than ten orders of magnitude over the pure PANI.Keywords: conductivity, fullerene, nanocomposite, polyaniline
Procedia PDF Downloads 2171016 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2351015 Entrepreneurial Orientation and Customer Satisfaction: Evidences nearby Khao San Road
Authors: Vichada Chokesikarin
Abstract:
The study aims to determine which factors account for customer satisfaction and to investigate the relationship between entrepreneurial orientation and business success, in particular, context of the information understanding of hostel business in Pranakorn district, Bangkok and the significant element of entrepreneurship in tourism industry. This study covers 352 hostels customers and 61 hostel owners/managers nearby Khao San Road. Data collection methods were used by survey questionnaire and a series of hypotheses were developed from services marketing literature. The findings suggest the customer satisfaction most influenced by image, service quality, room quality and price accordingly. Furthermore the findings revealed that significant relationships exist between entrepreneurial orientation and business success; while competitive aggressiveness was found unrelated. The ECSI model’s generic measuring customer satisfaction was found partially mediate the business success. A reconsideration of other variables applicable should be supported with the model of hostel business. The study provides context and overall view of hostel business while discussing from the entrepreneurial orientation to customer satisfaction, thereby reducing decision risk on hostel investment.Keywords: customer satisfaction, ECSI model, entrepreneurial orientation, small hotel, hostel, business performance
Procedia PDF Downloads 3361014 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites
Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic
Abstract:
Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)
Procedia PDF Downloads 2511013 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 3091012 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 5941011 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 1531010 Glorification Trap in Combating Human Trafficking in Indonesia: An Application of Three-Dimensional Model of Anti-Trafficking Policy
Authors: M. Kosandi, V. Susanti, N. I. Subono, E. Kartini
Abstract:
This paper discusses the risk of glorification trap in combating human trafficking, as it is shown in the case of Indonesia. Based on a research on Indonesian combat against trafficking in 2017-2018, this paper shows the tendency of misinterpretation and misapplication of the Indonesian anti-trafficking law into misusing the law for glorification, to create an image of certain extent of achievement in combating human trafficking. The objective of this paper is to explain the persistent occurrence of human trafficking crimes despite the significant progress of anti-trafficking efforts of Indonesian government. The research was conducted in 2017-2018 by qualitative approach through observation, depth interviews, discourse analysis, and document study, applying the three-dimensional model for analyzing human trafficking in the source country. This paper argues that the drive for glorification of achievement in the combat against trafficking has trapped Indonesian government in the loop of misinterpretation, misapplication, and misuse of the anti-trafficking law. In return, the so-called crime against humanity remains high and tends to increase in Indonesia.Keywords: human trafficking, anti-trafficking policy, transnational crime, source country, glorification trap
Procedia PDF Downloads 1671009 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 731008 Employing QR Code as an Effective Educational Tool for Quick Access to Sources of Kindergarten Concepts
Authors: Ahmed Amin Mousa, M. Abd El-Salam
Abstract:
This study discusses a simple solution for the problem of shortage in learning resources for kindergarten teachers. Occasionally, kindergarten teachers cannot access proper resources by usual search methods as libraries or search engines. Furthermore, these methods require a long time and efforts for preparing. The study is expected to facilitate accessing learning resources. Moreover, it suggests a potential direction for using QR code inside the classroom. The present work proposes that QR code can be used for digitizing kindergarten curriculums and accessing various learning resources. It investigates using QR code for saving information related to the concepts which kindergarten teachers use in the current educational situation. The researchers have established a guide for kindergarten teachers based on the Egyptian official curriculum. The guide provides different learning resources for each scientific and mathematical concept in the curriculum, and each learning resource is represented as a QR code image that contains its URL. Therefore, kindergarten teachers can use smartphone applications for reading QR codes and displaying the related learning resources for students immediately. The guide has been provided to a group of 108 teachers for using inside their classrooms. The results showed that the teachers approved the guide, and gave a good response.Keywords: kindergarten, child, learning resources, QR code, smart phone, mobile
Procedia PDF Downloads 2891007 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels
Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila
Abstract:
Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.Keywords: alternative fuels, cement clinker, microstructure, SEM
Procedia PDF Downloads 3651006 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 1141005 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime
Authors: Edgar Ochoa, G. Torres-Villasenor
Abstract:
Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation
Procedia PDF Downloads 1691004 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing
Authors: Jackson Parker Galvan, Wenxuan Guo
Abstract:
Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains
Procedia PDF Downloads 951003 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator
Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters
Abstract:
Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation
Procedia PDF Downloads 1251002 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4381001 Content Based Video Retrieval System Using Principal Object Analysis
Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham
Abstract:
Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM
Procedia PDF Downloads 3011000 Man Eaters and the Eaten Men: A Study of the Portrayal of Indians in the Writings of Jim Corbett
Authors: Iti Roychowdhury
Abstract:
India to the Colonial mind was a crazy quilt of multicoloured patchwork- a land of untold wealth and bejewelled maharajas, of snake charmers and tight rope walkers. India was also the land that offered unparalled game. Indeed Shikar (hunting) was de rigueur for the Raj experience. Tales of shootings and trophies were told and retold in clubs and in company. Foremost among the writers of this genre is Jim Corbett – tracker, hunter, writer, conservationist. Corbett is best known for the killing of man eating tigers and his best known books are Man eaters of Kumaon, The Temple Tiger, Man eating Leopard of Rudraprayag etc. The stories of Jim Corbett are stories of hunting, with no palpable design, no subtext of hegemony, or white man’s burden. The protagonists are the cats. Nevertheless from his writings emerge a vibrant picture of Indian villages, of men, women and children toiling for a livelihood under the constant shadow of the man eaters. Corbett shared a symbiotic relationship with the villagers. They needed him to kill the predators while Corbett needed the support of the locals as drum beaters, coolies and runners to accomplish his tasks. The aim of the present paper is to study the image of Indians in the writings of Jim Corbett and to examine them in the light of colonial perception of Indians.Keywords: hegemony, orientalism, Shikar literature, White Man's Burden
Procedia PDF Downloads 276999 A Lesson in the Social Welfare System in Mexico: Limited Resources for Unlimited Needs
Authors: Vanessa L. Haro
Abstract:
Beginning with a historical foundation of Mexico, this marks the start of a close examination of this major Latin American country by providing the context needed to understand the reasons for Mexico’s strengths and struggles today, specific to their response to the issue of gender violence. Responding to the challenge of combating gender violence and inequality, Mexico has created social programs and initiatives in hopes of addressing these issues and modernizing their gender norms, which currently disempower and dehumanize women, while simultaneously denying women the necessary tools needed to fight back or bring balance to the gender scales. Nevertheless, women in Mexico have made their voices heard with the most salient image of that of the mothers protesting while holding the photos of their young daughters who lost their lives. This case study on gender issues in Mexico works to acknowledge the diverse forces that contribute to the issue of gender violence, and to make a statement that this is a crisis that requires a more dynamic response within Mexico’s social welfare policies, and should not be allowed to continue to progress as a normative phenomenon. As the advocacy groups and protesters cry out, “Ni una menos! (Not one less), meaning we will not lose one more woman and making the statement that all women’s lives matter.Keywords: gender issues, Mexico, poverty, social welfare
Procedia PDF Downloads 265998 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models
Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi
Abstract:
This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control
Procedia PDF Downloads 54997 A Bayesian Network Approach to Customer Loyalty Analysis: A Case Study of Home Appliances Industry in Iran
Authors: Azam Abkhiz, Abolghasem Nasir
Abstract:
To achieve sustainable competitive advantage in the market, it is necessary to provide and improve customer satisfaction and Loyalty. To reach this objective, companies need to identify and analyze their customers. Thus, it is critical to measure the level of customer satisfaction and Loyalty very carefully. This study attempts to build a conceptual model to provide clear insights of customer loyalty. Using Bayesian networks (BNs), a model is proposed to evaluate customer loyalty and its consequences, such as repurchase and positive word-of-mouth. BN is a probabilistic approach that predicts the behavior of a system based on observed stochastic events. The most relevant determinants of customer loyalty are identified by the literature review. Perceived value, service quality, trust, corporate image, satisfaction, and switching costs are the most important variables that explain customer loyalty. The data are collected by use of a questionnaire-based survey from 1430 customers of a home appliances manufacturer in Iran. Four scenarios and sensitivity analyses are performed to run and analyze the impact of different determinants on customer loyalty. The proposed model allows businesses to not only set their targets but proactively manage their customer behaviors as well.Keywords: customer satisfaction, customer loyalty, Bayesian networks, home appliances industry
Procedia PDF Downloads 139