Search results for: artificial intelligence and genetic algorithms
3227 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 3483226 Collection and Phenotypic Characterization of Some Nigerian Bambara Groundnut (Vigna subterranea (L.) Verdc.) Germplasm Using Seed Morphology
Authors: Abejide Dorcas Ropo, Falusi Olamide Ahmed, Daudu Oladipupo Abdulazeez Yusuf, Muhammad Liman Muhammad, Gado Aishatu Adamu
Abstract:
Bambara groundnut is an indigenous African legume with great potential to tackle the problem of food insecurity in Nigeria. A germplasm collection mission was carried out in collaboration with the Agricultural Developments Project (ADP) Extension officers of Nigeria between October and December 2014. Bambara groundnut seeds were collected from farmers in different States in Nigeria, such as Kaduna, Niger, Kogi, Benue, Plateau, Adamawa, Nasarawa, Jigawa, Enugu, and Federal Capital Territoy (FCT) Abuja. Some seeds were also collected from National Centre for Genetic Resources and Biotechnology (NACGRAB). The seeds were phenotyped using the descriptor list of Vigna subterranea produced by the International Plant Genetic Resource Institute. A total of 45 original seed lots were collected, which comprised of mixed seeds having different seed coat colours (15) and pure seeded accessions having the same seed coat and eye colour (30). After sorting, a total of 83 accessions were derived from the 45 original seed lots collected, and a total of 24 distinct seed morphotypes with varying seed coat colours and eye colours were identified from the collections. They include cream ( cream ash eye, cream plain eye, and cream black eye), cream purplish spots, cream brown spots/stripe, cream black stripe, cream dark brown patches, cream light grey spots, cream black patches, black, red, light red, dark red, brownish red, brown speckled with black, red speckled with black, brown, brown with brown pattern below hilum, brown with black pattern below hilum, cream black, grey brown, grey black and variegated red. The highest number of accessions were collected from NACGRAB (11), followed by Niger State (10), and the lowest from Benue, Jigawa, and Adamawa States (2). Niger State also had the highest number of mixed seeds. The different seed phenotypes observed in the study are important for the field production of true-to-type lines and can be exploited for the genetic improvement of the Bambara groundnut.Keywords: Bambara groundnut, characterization, collection, germplasm, phenotypic
Procedia PDF Downloads 1423225 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud
Authors: Sharda Kumari, Saiman Shetty
Abstract:
Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation
Procedia PDF Downloads 1083224 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: knowledge representation, pervasive computing, agent technology, ECA rules
Procedia PDF Downloads 3383223 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing
Authors: Stephanie Liu Lu
Abstract:
With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.Keywords: AI-assistance, business Chinese, textual analysis, language education
Procedia PDF Downloads 573222 Public Participation in Science: The Case of Genetic Modified Organisms in Brazil
Authors: Maria Luisa Nozawa Ribeiro, Maria Teresa Miceli Kerbauy
Abstract:
This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil.Keywords: public engagement, public participation, science and technology studies, transgenic politics
Procedia PDF Downloads 3043221 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 283220 Information Visualization Methods Applied to Nanostructured Biosensors
Authors: Osvaldo N. Oliveira Jr.
Abstract:
The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique
Procedia PDF Downloads 3373219 Conservation Planning of Paris Polyphylla Smith, an Important Medicinal Herb of the Indian Himalayan Region Using Predictive Distribution Modelling
Authors: Mohd Tariq, Shyamal K. Nandi, Indra D. Bhatt
Abstract:
Paris polyphylla Smith (Family- Liliaceae; English name-Love apple: Local name- Satuwa) is an important folk medicinal herb of the Indian subcontinent, being a source of number of bioactive compounds for drug formulation. The rhizomes are widely used as antihelmintic, antispasmodic, digestive stomachic, expectorant and vermifuge, antimicrobial, anti-inflammatory, heart and vascular malady, anti-fertility and sedative. Keeping in view of this, the species is being constantly removed from nature for trade and various pharmaceuticals purpose, as a result, the availability of the species in its natural habitat is decreasing. In this context, it would be pertinent to conserve this species and reintroduce them in its natural habitat. Predictive distribution modelling of this species was performed in Western Himalayan Region. One such recent method is Ecological Niche Modelling, also popularly known as Species distribution modelling, which uses computer algorithms to generate predictive maps of species distributions in a geographic space by correlating the point distributional data with a set of environmental raster data. In case of P. polyphylla, and to understand its potential distribution zones and setting up of artificial introductions, or selecting conservation sites, and conservation and management of their native habitat. Among the different districts of Uttarakhand (28°05ˈ-31°25ˈ N and 77°45ˈ-81°45ˈ E) Uttarkashi, Rudraprayag, Chamoli, Pauri Garhwal and some parts of Bageshwar, 'Maximum Entropy' (Maxent) has predicted wider potential distribution of P. polyphylla Smith. Distribution of P. polyphylla is mainly governed by Precipitation of Driest Quarter and Mean Diurnal Range i.e., 27.08% and 18.99% respectively which indicates that humidity (27%) and average temperature (19°C) might be suitable for better growth of Paris polyphylla.Keywords: biodiversity conservation, Indian Himalayan region, Paris polyphylla, predictive distribution modelling
Procedia PDF Downloads 3303218 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 673217 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3763216 A Comparative Study of the Maximum Power Point Tracking Methods for PV Systems Using Boost Converter
Authors: M. Doumi, A. Miloudi, A.G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir
Abstract:
The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. These algorithms are based on the Perturb-Observe, Conductance-Increment and the Fuzzy Logic methods. These techniques vary in many aspects as: simplicity, convergence speed, digital or analogical implementation, sensors required, cost, range of effectiveness, and in other aspects. This paper presents a comparative study of three widely-adopted MPPT algorithms; their performance is evaluated on the energy point of view, by using the simulation tool Simulink®, considering different solar irradiance variations. MPPT using fuzzy logic shows superior performance and more reliable control to the other methods for this application.Keywords: photovoltaic system, MPPT, perturb and observe (P&O), incremental conductance (INC), Fuzzy Logic (FLC)
Procedia PDF Downloads 4113215 An Academic Theory on a Sustainable Evaluation of Achatina Fulica Within Ethekwini, KwaZulu-Natal
Authors: Sibusiso Trevor Tshabalala, Samuel Lubbe, Vince Vuledzani Ndou
Abstract:
Dependency on chemicals has had many disadvantages in pest management control strategies. Such genetic rodenticide resistance and secondary exposure risk are what is currently being experienced. Emphasis on integrated pest management suggests that to control future pests, early intervention and economic threshold development are key starting points in crop production. The significance of this research project is to help establish a relationship between Giant African Land Snail (Achatina Fulica) solution extract, its shell chemical properties, and farmer’s perceptions of biological control in eThekwini Municipality Agri-hubs. A mixed design approach to collecting data will be explored using a trial layout in the field and through interviews. The experimental area will be explored using a split-plot design that will be replicated and arranged in a randomised complete block design. The split-plot will have 0, 10, 20 and 30 liters of water to one liter of snail solution extract. Plots were 50 m² each with a spacing of 12 m between each plot and a plant spacing of 0.5 m (inter-row) ‘and 0.5 m (intra-row). Trials will be irrigated using sprinkler irrigation, with objective two being added to the mix every 4-5 days. The expected outcome will be improved soil fertility and micro-organisms population proliferation.Keywords: giant african land snail, integrated pest management, photosynthesis, genetic rodenticide resistance, control future pests, shell chemical properties
Procedia PDF Downloads 1043214 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents
Authors: Rakesh Namdeti
Abstract:
Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network
Procedia PDF Downloads 763213 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy
Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr
Abstract:
Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.Keywords: ageing, casting, mechanical strength, precipitates
Procedia PDF Downloads 4983212 Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes
Authors: Anita Singh, Richa Naula, Manoj Raghav
Abstract:
Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products.Keywords: genotypes, macronutrients, micronutrient, protein, seeds
Procedia PDF Downloads 2543211 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1743210 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment
Authors: Yang Song, Yifan Guo, Edward F. Gehringer
Abstract:
Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.Keywords: peer assessment, peer rating, peer ranking, reliability
Procedia PDF Downloads 4393209 Upcoming Fight Simulation with Smart Shadow
Authors: Ramiz Kuliev, Fuad Kuliev-Smirnov
Abstract:
The 'Shadow Sparring' training exercise is widely used in the training of boxers and martial artists. The main disadvantage of the usual shadow sparring is that the trainer cannot fully control such training and evaluate its results. During the competition, the athlete, preparing for the upcoming fight, imagines the Shadow (upcoming opponent) in accordance with his own imagination. A ‘Smart-Shadow Sparring’ (SSS) is an innovative version of the ‘Shadow Sparring’. During SSS, the fighter will see the Shadow (virtual opponent that moves, defends, and punches) and understand when he misses the punches from the Shadow. The task of a real athlete is to spar with a virtual one, move around, punch in the direction of unprotected areas of the Shadow and dodge his punches. Moves and punches of Shadow are set up before each training. The system will give the coach full information about virtual sparring: (i) how many and what type of punches has the fighter landed, (ii) accuracy of these punches, (iii) how many and what type of virtual punches (punches of Smart-Shadow) has the fighter missed, etc. SSS will be recorded as animated fighting of two fighters and will help the coach to analyze past training. SSS can be configured to fit the physical and technical characteristics of the next real opponent (size, techniques, speed, missed and landed punches, etc.). This will allow to simulate and rehearse the upcoming fight and improve readiness for the next opponent. For amateur fighters, SSS will be reconfigured several times during a tournament, when the real opponent becomes known. SSS can be used in three versions: (1) Digital Shadow: the athlete will see a Shadow on a monitor (2) VR-Shadow: the athlete will see a Shadow in a VR-glasses (3) Smart Shadow: a Shadow will be controlled by artificial intelligence. These technologies are based on the ‘semi-real simulation’ method. The technology allows coaches to train athletes remotely. Simulation of different opponents will help the athletes better prepare for competition. Repeat rehearsals of the upcoming fight will help improve results. SSS can improve results in Boxing, Taekwondo, Karate, and Fencing. 41 sets of medals will be awarded in these sports at the 2020 Olympic Games.Keywords: boxing, combat sports, fight simulation, shadow sparring
Procedia PDF Downloads 1323208 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia
Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia
Abstract:
In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.Keywords: magnetic cilia, particle separation, tunable separation, soft actutors
Procedia PDF Downloads 1993207 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic
Authors: Farahnaz Karami
Abstract:
Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic
Procedia PDF Downloads 643206 Bridge Healthcare Access Gap with Artifical Intelligence
Authors: Moshmi Sangavarapu
Abstract:
The US healthcare industry has undergone tremendous digital transformation in recent years, but critical care access to lower-income ethnicities is still in its nascency. This population has historically showcased substantial hesitation to seek any medical assistance. While the lack of sufficient financial resources plays a critical role, the existing cultural and knowledge barriers also contribute significantly to widening the access gap. It is imperative to break these barriers to ensure timely access to therapeutic procedures that can save important lives! Based on ongoing research, healthcare access barriers can be best addressed by tapping the untapped potential of caregiver communities first. They play a critical role in patients’ diagnoses, building healthcare knowledge and instilling confidence in required therapeutic procedures. Recent technological advancements have opened many avenues by developing smart ways of reaching the large caregiver community. A digitized go-to-market strategy featuring connected media coupled with smart IoT devices and geo-location targeting can be collectively leveraged to reach this key audience group. AI/ML algorithms can be thoroughly trained to identify relevant data signals from users' location and browsing behavior and determine useful marketing touchpoints. The web behavior can be further assimilated with natural language processing to identify contextually relevant interest topics and decipher potential caregivers on digital avenues to serve that brand message. In conclusion, grasping the true health access journey of any lower-income ethnic group is important to design beneficial touchpoints that can alleviate patients’ concerns and allow them to break their own access barriers and opt for timely and quality healthcare.Keywords: healthcare access, market access, diversity barriers, patient journey
Procedia PDF Downloads 543205 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers
Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati
Abstract:
Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)
Procedia PDF Downloads 3343204 TNF-α, TNF-β and IL-10 Gene Polymorphism and Association with Oral Lichen Planus Risk in Saudi Patients
Authors: Maha Ali Al-Mohaya, Lubna Majed Al-Otaibi, Ebtissam Nassir Al-Bakr, Abdulrahman Al-Asmari
Abstract:
Objectives: Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disease. Cytokines play an important role in the pathogenesis and disease progression of OLP. The purpose of this study was to investigate the association of tumor necrosis factor (TNF)-α, TNF-β and interleukin (IL)-10 gene polymorphisms with the OLP risk. Material and Methods: Forty-two unrelated patients with OLP and 211 healthy volunteers were genotyped for TNF-α (-308 G/A), TNF-β (+252A/G), IL-10 (-1082G/A), IL-10 (-819C/T), and IL-10 (-592C/A) polymorphisms. Results: The frequencies of allele A and genotype GA of TNF-α (-308G/A) were significantly higher while allele G and GG genotypes were lower in OLP patients as compared to the controls (P < 0.001). The frequency of GA genotype of TNF-β (+252A/G) was significantly higher in patients than in controls while the AA genotype was completely absent in OLP patients. These results indicated that allele A and genotype GA of TNF-α (-308G/A) as well as the GA genotype of TNF-β (+252A/G) polymorphisms are associated with OLP risk. The frequencies of alleles and genotypes of -1082G/A, -819C/T and -592C/A polymorphisms in IL-10 gene did not differ significantly between OLP patients and controls (P > 0.05). However, haplotype ATA extracted from 1082G/A, -819C/T, -592C/A polymorphisms of IL-10 were more prevalent in OLP patients when compared to controls indicating its possible association with OLP susceptibility. Conclusion: It is concluded that TNF-α (-308G/A), TNF-β (+252A/G) and IL-10 (-1082G/A, -819C/T and -592C/A) polymorphisms are associated with the susceptibility of OLP, thus giving additional support for the genetic basis of this disease. Further studies are required using a larger sample size to confirm this association and determine the prognostic values of these findings.Keywords: oral lichen planus, cytokines, polymorphism, genetic
Procedia PDF Downloads 3033203 Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem
Authors: Mohammad Pourmohammadi Fallah, Maziar Salahi
Abstract:
In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics.Keywords: capacitated lot-sizing, warehouse layout, mixed-integer linear programming, heuristics algorithm
Procedia PDF Downloads 1963202 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education
Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke
Abstract:
This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education
Procedia PDF Downloads 173201 In silico Analysis of a Causative Mutation in Cadherin-23 Gene Identified in an Omani Family with Hearing Loss
Authors: Mohammed N. Al Kindi, Mazin Al Khabouri, Khalsa Al Lamki, Tommasso Pappuci, Giovani Romeo, Nadia Al Wardy
Abstract:
Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every five hundred newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. CDH23 is found to be expressed in the stereocilia of hair cells and the retina photoreceptor cells. Defective CDH23 has been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12). An Omani family diagnosed clinically with severe-profound sensorineural hearing loss was genetically analysed by whole exome sequencing technique. A novel homozygous missense variant, c.A7451C (p.D2484A), in exon 53 of CDH23 was detected. One hundred and thirty control samples were analysed where all were negative for the detected variant. The variant was analysed in silico for pathogenicity verification using several mutation prediction software. The variant proved to be a pathogenic mutation and is reported for the first time in Oman and worldwide. It is concluded that in silico mutation prediction analysis might be used as a useful molecular diagnostics tool benefiting both genetic counseling and mutation verification. The aspartic acid 2484 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.Keywords: Cdh23, d2484a, in silico, Oman
Procedia PDF Downloads 2163200 General Mood and Emotional Regulation as Predictors of Bullying Behaviors among Adolescent Males: Basis for a Proposed Bullying Intervention Program
Authors: Angelyn Del Mundo
Abstract:
Bullying cases are a proliferating issue that schools need to address. This calls for a challenge in providing effective measures to reduce bullying. The study aimed to determine which among the socio-emotional aspects of adolescent males could predict bullying. The respondents of the study were the grades 10 and 11 level and the selection of the respondents was based on the names listed by the teachers and guidance counselors through the Student Nomination Questionnaire. The Bullying Survey Questionnaire Checklist was answered by the respondents to be able to identify their most observed bullying behavior. On the other hand, the level of their mental ability was measured through the use of Otis-Lennon School Ability Test, while their socio-emotional aspects was is classified into 2 contexts: emotional intelligence and personality traits which were determined with the use of Bar-On Emotional Quotient Inventory: Youth Version (BarOn EQ-i:YV) and the Five-Factor Personality Inventory-Children (FFPI-C). Results indicated that majority of the respondents have average level of mental ability and socio-emotional aspects. However, many students have low to markedly low level interpersonal scale. Furthermore, general mood and emotional regulation were found as predictors of bullying behaviors. These findings became the basis for a proposed bullying intervention program.Keywords: bullying, emotional intelligence, mental ability, personality traits
Procedia PDF Downloads 2823199 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum
Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi
Abstract:
Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites
Procedia PDF Downloads 933198 Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.Keywords: indexing, retrieval, multimedia, graph algorithm, graph code
Procedia PDF Downloads 161